R/calc_diam_plot_species.R
calc_diam_plot_species.Rd
This function calculates for each plot, tree species, year and diameter class some values per hectare: number of stems, basal area and volume of standing trees (for coppice based on data on shoot level), and volume of logs (= lying deadwood).
calc_diam_plot_species(data_stems_calc, data_deadwood, plotinfo)
dataframe on stem level measurements with variables
plot_id
, plottype
, tree_measure_id
, date_dendro
, dbh_mm
,
height_m
, species
, alive_dead
, decaystage
, period
, year
,
subcircle
, plotarea_ha
,...
(output of function calc_variables_stem_level()
)
dataframe on logs with variables plot_id
, plottype
,
date_dendro
, species
, decaystage
, calc_volume_m3
, period
and year
(output of function load_data_deadwood()
)
dataframe on surveyed plots with variables plot_id
,
plottype
, forest_reserve
, survey_trees
, survey_deadw
, period
and
year_dendro
(output of function load_plotinfo()
)
dataframe with columns plot
, year
, tree_species
,
dbh_class_5cm
, basal_area_m2_ha
, volume_m3_ha
library(forrescalc)
# (add path to your own fieldmap database here)
path_to_fieldmapdb <-
system.file("example/database/mdb_bosres.sqlite", package = "forrescalc")
data_dendro <- load_data_dendrometry(path_to_fieldmapdb)
data_shoots <- load_data_shoots(path_to_fieldmapdb)
data_stems <- compose_stem_data(data_dendro, data_shoots)
# omit argument 'example_dataset = TRUE' below to use all height models
height_model <- load_height_models(example_dataset = TRUE)
data_stems_calc <- calc_variables_stem_level(data_stems, height_model)
data_deadwood <- load_data_deadwood(path_to_fieldmapdb)
plotinfo <- load_plotinfo(path_to_fieldmapdb)
#> Joining with `by = join_by(forest_reserve, plot_id, plottype, survey_trees)`
calc_diam_plot_species(data_stems_calc, data_deadwood, plotinfo)
#> # A tibble: 158 × 15
#> plottype plot_id year period species dbh_class_5cm stem_number_alive_ha
#> <chr> <int> <int> <dbl> <dbl> <fct> <dbl>
#> 1 CA 11000 1986 0 7 65 - 70 cm 0.0930
#> 2 CA 11000 1986 0 7 80 - 85 cm 0.0930
#> 3 CA 11000 1986 0 7 85 - 90 cm 0.0930
#> 4 CA 11000 1986 0 87 50 - 55 cm 0.0930
#> 5 CA 11000 1986 0 87 60 - 65 cm 0.0930
#> 6 CA 11000 1986 0 87 75 - 80 cm 0.0930
#> 7 CA 11000 2000 1 7 75 - 80 cm 0.0930
#> 8 CA 11000 2000 1 7 85 - 90 cm 0.0930
#> 9 CA 11000 2000 1 7 95 - 100 cm 0.0930
#> 10 CA 11000 2000 1 16 30 - 35 cm 0.0930
#> # ℹ 148 more rows
#> # ℹ 8 more variables: stem_number_dead_ha <dbl>, basal_area_alive_m2_ha <dbl>,
#> # basal_area_dead_m2_ha <dbl>, vol_alive_m3_ha <dbl>,
#> # vol_dead_standing_m3_ha <dbl>, vol_bole_alive_m3_ha <dbl>,
#> # vol_bole_dead_m3_ha <dbl>, vol_log_m3_ha <dbl>