Execute distance analysis on ship-based survey results
Source:R/Calculate_Detection_P_Ship_Based_Surveys.R
Calculate_Detection_P_Ship_Based_Surveys.Rd
This function calculates detection probabilities for specified species from ship-based survey data using distance sampling methods. It filters the input data for relevant observations, fits half-normal and hazard-rate models, and selects the best model based on AIC values. The output is a data frame containing species names, the selected model function, and the average detection probability.
Arguments
- esas_table_2_analyse
A data frame containing survey data with columns for distance bins, platform class, transect type, observation distance, species code, behavior, and count. As returned by
Create_ESAS_Table()
.- species_2_analyse
A vector of species codes as encoded in the species column of the Observations table in the ESAS Data Model. See the Species page of the Data Model.
Value
A data.frame with the following columns:
Species: The species code.
Function: The selected detection function ("HR" for hazard-rate or "HN" for half-normal).
Detection_P_AVG: The average detection probability for the species.
See also
Other analysis functions:
Create_ESAS_Table()
,
Create_Seabird_Density_Cross_Table()
Examples
if (FALSE) { # \dontrun{
# Read 4 ESAS tables:
ESAS_TABLES_LIST <- Read_ESAS_Tables(
path = "./Data/ESAS download 2024 04 30",
file_encoding = "UTF-8"
)
# Create an ESAS master-table:
ESAS_TABLE <- Create_ESAS_Table(esas_tables_list = ESAS_TABLES_LIST)
# Execute distance analysis on selection of species:
PROBABILITIES <- Calculate_Detection_P_Ship_Based_Surveys(
esas_table_2_analyse = ESAS_TABLE,
species_2_analyse = c(720, 6020)
)
} # }