Use simulations to compare the observed distribution with the modelled distribution
Source:R/fast_distribution_check.R
fast_distribution_check.Rd
This check uses the fitted values and thus ignores the uncertainty on the predictions
Usage
fast_distribution_check(object, nsim = 1000)
# S4 method for class 'inla'
fast_distribution_check(object, nsim = 1000)
# S4 method for class 'list'
fast_distribution_check(object, nsim = 1000)
See also
Other checks:
dispersion_check()
,
distribution_check()
,
fast_aggregation_check()
,
get_anomaly()
Examples
library(INLA)
set.seed(20181202)
model <- inla(
poisson ~ 1,
family = "poisson",
data = data.frame(
poisson = rpois(20, lambda = 10),
base = 1
),
control.predictor = list(compute = TRUE)
)
fast_distribution_check(model)
#> # A tibble: 26 × 6
#> x median lcl ucl n ecdf
#> <int> <dbl> <dbl> <dbl> <int> <dbl>
#> 1 1 0 0 0 0 0
#> 2 2 0 0 0 0 0
#> 3 3 0 0 0.05 0 0
#> 4 4 0 0 0.1 0 0
#> 5 5 0.05 0 0.15 0 0
#> 6 6 0.05 0 0.2 1 0.05
#> 7 7 0.15 0 0.3 3 0.2
#> 8 8 0.25 0.05 0.45 0 0.2
#> 9 9 0.35 0.15 0.55 2 0.3
#> 10 10 0.45 0.25 0.7 3 0.45
#> # ℹ 16 more rows