This function makes aggregations of tree generation data on the levels of

  • plot and year (and subplot for core area)

  • plot, height class and year (and subplot for core area)

  • plot, tree species and year (and subplot for core area)

  • plot, height class, tree species and year (and subplot for core area)

For core area plots it makes additional aggregations on the levels of

  • core area, tree species and year

  • core area, height class, tree species and year

calculate_regeneration(data_regeneration)

Arguments

data_regeneration

dataframe on tree regeneration with variables plot_id, plottype, subplot_id, height_class, species, nr_of_regeneration, rubbing_damage_number, period, year, subcircle, plotarea_ha, min_number_of_regeneration and max_number_of_regeneration.

Value

List of dataframes that are mentioned in the above description

Examples

library(forrescalc)
# (add path to your own fieldmap database here)
path_to_fieldmapdb <-
  system.file("example/database/mdb_bosres.sqlite", package = "forrescalc")
data_regeneration <- load_data_regeneration(path_to_fieldmapdb)
calculate_regeneration(data_regeneration)
#> $reg_by_plot
#> # A tibble: 30 × 25
#>    plottype plot_id subplot_id period  year number_of_tree_species
#>    <chr>      <int>      <int>  <int> <int>                  <int>
#>  1 CA         11000     155511      1  2000                      0
#>  2 CA         11000     155511      2  2011                      1
#>  3 CA         11000     155511      3  2021                      1
#>  4 CA         11000     155512      1  2000                      0
#>  5 CA         11000     155513      1  2000                      0
#>  6 CA         11000     155521      2  2011                      2
#>  7 CA         11000     155521      3  2021                      1
#>  8 CA         11000     155531      2  2011                      2
#>  9 CA         11000     155531      3  2021                      3
#> 10 CA         21000          1      1  2009                      4
#> # ℹ 20 more rows
#> # ℹ 19 more variables: nr_of_tree_species_established <int>,
#> #   approx_nr_established_ha <dbl>, approx_nr_seedlings_ha <dbl>,
#> #   approx_rubbing_damage_perc_established <dbl>,
#> #   approx_rubbing_damage_perc_seedlings <dbl>,
#> #   rubbing_damage_nr_established_ha <dbl>,
#> #   rubbing_damage_nr_seedlings_ha <dbl>, mean_number_established_ha <dbl>, …
#> 
#> $reg_by_plot_height
#> # A tibble: 76 × 13
#>    plottype plot_id subplot_id period  year height_class number_of_tree_species
#>    <chr>      <int>      <int>  <int> <int>        <int>                  <int>
#>  1 CA         11000     155511      1  2000           NA                      0
#>  2 CA         11000     155511      2  2011         1000                      1
#>  3 CA         11000     155511      2  2011         2000                      1
#>  4 CA         11000     155511      2  2011         3000                      1
#>  5 CA         11000     155511      3  2021         1000                      1
#>  6 CA         11000     155511      3  2021         2000                      1
#>  7 CA         11000     155511      3  2021         3000                      1
#>  8 CA         11000     155511      3  2021         4000                      1
#>  9 CA         11000     155512      1  2000           NA                      0
#> 10 CA         11000     155513      1  2000           NA                      0
#> # ℹ 66 more rows
#> # ℹ 6 more variables: approx_nr_regeneration_ha <dbl>,
#> #   approx_rubbing_damage_perc <dbl>, rubbing_damage_number_ha <dbl>,
#> #   mean_number_of_regeneration_ha <dbl>, lci_number_of_regeneration_ha <dbl>,
#> #   uci_number_of_regeneration_ha <dbl>
#> 
#> $reg_by_plot_species
#> # A tibble: 99 × 24
#>    plottype plot_id subplot_id period  year species approx_nr_established_ha
#>    <chr>      <int>      <int>  <int> <int>   <int>                    <dbl>
#>  1 CA         11000     155511      1  2000      NA                        0
#>  2 CA         11000     155511      2  2011       7                      200
#>  3 CA         11000     155511      3  2021       7                     1000
#>  4 CA         11000     155512      1  2000      NA                        0
#>  5 CA         11000     155513      1  2000      NA                        0
#>  6 CA         11000     155521      2  2011       7                        0
#>  7 CA         11000     155521      2  2011      87                        0
#>  8 CA         11000     155521      3  2021       7                     1700
#>  9 CA         11000     155531      2  2011       7                        0
#> 10 CA         11000     155531      2  2011      87                        0
#> # ℹ 89 more rows
#> # ℹ 17 more variables: approx_nr_seedlings_ha <dbl>,
#> #   approx_rubbing_damage_perc_established <dbl>,
#> #   approx_rubbing_damage_perc_seedlings <dbl>,
#> #   rubbing_damage_nr_established_ha <dbl>,
#> #   rubbing_damage_nr_seedlings_ha <dbl>, mean_number_established_ha <dbl>,
#> #   lci_number_established_ha <dbl>, uci_number_established_ha <dbl>, …
#> 
#> $reg_by_plot_height_species
#> # A tibble: 167 × 13
#>    plottype plot_id subplot_id period  year height_class species
#>    <chr>      <int>      <int>  <int> <int>        <int>   <int>
#>  1 CA         11000     155511      1  2000           NA      NA
#>  2 CA         11000     155511      2  2011         1000       7
#>  3 CA         11000     155511      2  2011         2000       7
#>  4 CA         11000     155511      2  2011         3000       7
#>  5 CA         11000     155511      3  2021         1000       7
#>  6 CA         11000     155511      3  2021         2000       7
#>  7 CA         11000     155511      3  2021         3000       7
#>  8 CA         11000     155511      3  2021         4000       7
#>  9 CA         11000     155512      1  2000           NA      NA
#> 10 CA         11000     155513      1  2000           NA      NA
#> # ℹ 157 more rows
#> # ℹ 6 more variables: approx_nr_regeneration_ha <dbl>,
#> #   approx_rubbing_damage_perc <dbl>, rubbing_damage_number_ha <dbl>,
#> #   mean_number_of_regeneration_ha <dbl>, lci_number_of_regeneration_ha <dbl>,
#> #   uci_number_of_regeneration_ha <dbl>
#> 
#> $reg_by_core_area_species
#> # A tibble: 32 × 25
#>    plottype plot_id period  year species nr_of_subplots_with_regeneration
#>    <chr>      <int>  <int> <int>   <int>                            <int>
#>  1 CA         11000      1  2000      NA                                3
#>  2 CA         11000      2  2011       7                                3
#>  3 CA         11000      2  2011      87                                2
#>  4 CA         11000      3  2021       7                                3
#>  5 CA         11000      3  2021      16                                1
#>  6 CA         11000      3  2021      87                                1
#>  7 CA         21000      1  2009       7                                3
#>  8 CA         21000      1  2009      16                                3
#>  9 CA         21000      1  2009      27                                3
#> 10 CA         21000      1  2009      87                                3
#> # ℹ 22 more rows
#> # ℹ 19 more variables: perc_subplots_with_regeneration <dbl>,
#> #   approx_nr_established_ha <dbl>, approx_nr_seedlings_ha <dbl>,
#> #   approx_rubbing_damage_perc_established <dbl>,
#> #   approx_rubbing_damage_perc_seedlings <dbl>,
#> #   rubbing_damage_nr_established_ha <dbl>,
#> #   rubbing_damage_nr_seedlings_ha <dbl>, mean_number_established_ha <dbl>, …
#> 
#> $reg_by_core_area_height_species
#> # A tibble: 65 × 14
#>    plottype plot_id period  year height_class species nr_of_subplots_with_rege…¹
#>    <chr>      <int>  <int> <int>        <int>   <int>                      <int>
#>  1 CA         11000      1  2000           NA      NA                          3
#>  2 CA         11000      2  2011         1000       7                          3
#>  3 CA         11000      2  2011         1000      87                          2
#>  4 CA         11000      2  2011         2000       7                          2
#>  5 CA         11000      2  2011         3000       7                          1
#>  6 CA         11000      3  2021         1000       7                          3
#>  7 CA         11000      3  2021         1000      16                          1
#>  8 CA         11000      3  2021         1000      87                          1
#>  9 CA         11000      3  2021         2000       7                          3
#> 10 CA         11000      3  2021         3000       7                          3
#> # ℹ 55 more rows
#> # ℹ abbreviated name: ¹​nr_of_subplots_with_regeneration
#> # ℹ 7 more variables: perc_subplots_with_regeneration <dbl>,
#> #   approx_nr_regeneration_ha <dbl>, approx_rubbing_damage_perc <dbl>,
#> #   rubbing_damage_number_ha <dbl>, mean_number_of_regeneration_ha <dbl>,
#> #   lci_number_of_regeneration_ha <dbl>, uci_number_of_regeneration_ha <dbl>
#>