R/calc_reg_core_area_height_spec.R
calc_reg_core_area_height_spec.Rd
This function calculates for each plot, height, species and year the number of regeneration per ha (or interval with mean and confidence interval using a log transformation), the number and percentage of subplots in which the species is regenerating and the approximate rubbing damage percentage per hectare. This calculation is designed for core areas, that consist of different subplots.
calc_reg_core_area_height_spec(data_regeneration)
dataframe with columns plot
, species
, year
, height
,
nr_of_subplots_with_regeneration
, perc_subplots_with_regeneration
,
approx_rubbing_damage_perc
, mean_number_of_regeneration_ha
,
lci_number_of_regeneration_ha
, uci_number_of_regeneration_ha
and
approx_nr_regeneration_ha.
library(forrescalc)
# (add path to your own fieldmap database here)
path_to_fieldmapdb <-
system.file("example/database/mdb_bosres.sqlite", package = "forrescalc")
data_regeneration_CA <-
load_data_regeneration(path_to_fieldmapdb, plottype = "CA")
calc_reg_core_area_height_spec(data_regeneration_CA)
#> # A tibble: 65 × 14
#> plottype plot_id period year height_class species nr_of_subplots_with_rege…¹
#> <chr> <int> <int> <int> <int> <int> <int>
#> 1 CA 11000 1 2000 NA NA 3
#> 2 CA 11000 2 2011 1000 7 3
#> 3 CA 11000 2 2011 1000 87 2
#> 4 CA 11000 2 2011 2000 7 2
#> 5 CA 11000 2 2011 3000 7 1
#> 6 CA 11000 3 2021 1000 7 3
#> 7 CA 11000 3 2021 1000 16 1
#> 8 CA 11000 3 2021 1000 87 1
#> 9 CA 11000 3 2021 2000 7 3
#> 10 CA 11000 3 2021 3000 7 3
#> # ℹ 55 more rows
#> # ℹ abbreviated name: ¹nr_of_subplots_with_regeneration
#> # ℹ 7 more variables: perc_subplots_with_regeneration <dbl>,
#> # approx_nr_regeneration_ha <dbl>, approx_rubbing_damage_perc <dbl>,
#> # rubbing_damage_number_ha <dbl>, mean_number_of_regeneration_ha <dbl>,
#> # lci_number_of_regeneration_ha <dbl>, uci_number_of_regeneration_ha <dbl>