Skip to contents

Introduction

In this vignette we show a typical workflow using the etn package to retrieve acoustic telemetry data from ETN. We will also use the packages dplyr for data exploration, lubridate to handle datetime data and leaflet for interactive visualizations.

To start, load the etn package:

And the other packages (with installation if necessary):

other_pkgs <- c("dplyr", "lubridate", "leaflet")

# install missing packages
pkgs_to_install <- other_pkgs[!other_pkgs %in% rownames(installed.packages())]
install.packages(pkgs_to_install)

# load packages
library(dplyr)
library(lubridate)
library(leaflet)

Connect with your user credentials (as received by VLIZ) to the database. To not expose such confidential information, you could opt to use environment variables:

con <- connect_to_etn(Sys.getenv("userid"), Sys.getenv("pwd"))
# This is the default, so you could also use connect_to_etn()

Using con as variable to store the collection is not mandatory, but it makes your life much easier as con is the default value of the argument connection, present in every other function of this package.

Select project(s) of interest

A researcher typically works in the context of one or more animal projects. As the project codes are not always easy to remember, let’s start by getting an overview of all projects:

all_projects <- get_animal_projects()

Show a preview:

all_projects %>% head(10)
## # A tibble: 10 × 11
##    project_id project_code   project_type telemetry_type project_name start_date
##         <int> <chr>          <chr>        <chr>          <chr>        <date>    
##  1        793 2004_Gudena    animal       Acoustic       2004_Gudena  2004-01-01
##  2         16 2010_phd_reub… animal       Acoustic       2010_phd_re… 2010-08-01
##  3        841 2010_phd_reub… animal       Acoustic       2010_phd_re… 2010-08-01
##  4        760 2011_Loire     animal       Acoustic       2011_Loire   2011-11-11
##  5        754 2011_Warnow    animal       Acoustic       2011_Warnow  2011-06-01
##  6         20 2011_rivierpr… animal       Acoustic       2011 Rivier… 2011-01-01
##  7         15 2012_leopoldk… animal       Acoustic       2012 Leopol… 2012-01-01
##  8        757 2013_Foyle     animal       Acoustic       2013_Foyle   2013-07-01
##  9         18 2013_albertka… animal       Acoustic       2013 Albert… 2013-10-10
## 10        801 2014_Frome     animal       Acoustic       2014_Frome   2014-10-01
## # ℹ 5 more variables: end_date <date>, latitude <dbl>, longitude <dbl>,
## #   moratorium <lgl>, imis_dataset_id <int>

If you know the project code already and you are just interested to get more information about it, you can specify it in the get_animal_projects() function directly:

projects_code <- c("2014_demer", "2015_dijle")
projects_study <- get_animal_projects(animal_project_code = projects_code)
projects_study
## # A tibble: 2 × 11
##   project_id project_code project_type telemetry_type project_name start_date
##        <int> <chr>        <chr>        <chr>          <chr>        <date>    
## 1         21 2014_demer   animal       Acoustic       2014 Demer   2014-04-10
## 2         22 2015_dijle   animal       Acoustic       2015 Dijle   2015-04-16
## # ℹ 5 more variables: end_date <date>, latitude <dbl>, longitude <dbl>,
## #   moratorium <lgl>, imis_dataset_id <int>

This is exactly the same as retrieving all projects first and filtering them afterwards based on column project_code:

all_projects %>%
  filter(project_code %in% c(projects_code))
## # A tibble: 2 × 11
##   project_id project_code project_type telemetry_type project_name start_date
##        <int> <chr>        <chr>        <chr>          <chr>        <date>    
## 1         21 2014_demer   animal       Acoustic       2014 Demer   2014-04-10
## 2         22 2015_dijle   animal       Acoustic       2015 Dijle   2015-04-16
## # ℹ 5 more variables: end_date <date>, latitude <dbl>, longitude <dbl>,
## #   moratorium <lgl>, imis_dataset_id <int>

To list all available animal project codes as a vector, you can use list_animal_project_codes(), one of the etn functions in the list_* family:

##  [1] "2004_Gudena"           "2010_phd_reubens"      "2010_phd_reubens_sync"
##  [4] "2011_Loire"            "2011_rivierprik"       "2011_Warnow"          
##  [7] "2012_leopoldkanaal"    "2013_albertkanaal"     "2013_Foyle"           
## [10] "2014_demer"

Animals

By using get_animals() you can retrieve information about each animal (animal_id), such as scientific name, length, capture/release date and location, and the attached tag(s) (tag_serial_number):

animals <- get_animals(animal_project_code = projects_code)
animals %>% head(10)
## # A tibble: 10 × 66
##    animal_id animal_project_code tag_serial_number tag_type tag_subtype
##        <int> <chr>               <chr>             <chr>    <chr>      
##  1       304 2014_demer          1187449           acoustic animal     
##  2       384 2014_demer          1157781           acoustic animal     
##  3       385 2014_demer          1157782           acoustic animal     
##  4       386 2014_demer          1157783           acoustic animal     
##  5       305 2014_demer          1187450           acoustic animal     
##  6       383 2014_demer          1157780           acoustic animal     
##  7       369 2014_demer          1171781           acoustic animal     
##  8       370 2014_demer          1171782           acoustic animal     
##  9       365 2014_demer          1171775           acoustic animal     
## 10       366 2014_demer          1171776           acoustic animal     
## # ℹ 61 more variables: acoustic_tag_id <chr>,
## #   acoustic_tag_id_alternative <chr>, scientific_name <chr>,
## #   common_name <chr>, aphia_id <int>, animal_label <chr>,
## #   animal_nickname <chr>, tagger <chr>, capture_date_time <dttm>,
## #   capture_location <chr>, capture_latitude <dbl>, capture_longitude <dbl>,
## #   capture_method <chr>, capture_depth <chr>,
## #   capture_temperature_change <chr>, release_date_time <dttm>, …

What species and how many individuals are tracked for the projects 2014_demer and 2015_dijle?

animals %>%
  count(scientific_name)
## # A tibble: 7 × 2
##   scientific_name        n
##   <chr>              <int>
## 1 Anguilla anguilla      1
## 2 Cyprinus carpio        2
## 3 Petromyzon marinus     2
## 4 Platichthys flesus     8
## 5 Rutilus rutilus        6
## 6 Silurus glanis        20
## 7 Squalius cephalus      3

Detections

Let’s say we are interested in the tracking data of Wels catfish (Silurus glanis) in 2014. You can retrieve the detection history using get_acoustic_detections():

detections_silurus <- get_acoustic_detections(
  animal_project_code = projects_code,
  start_date = "2014-01-01",
  end_date = "2015-01-01", # The end date is exclusive
  scientific_name = "Silurus glanis"
)

Preview:

detections_silurus %>% head(10)
## # A tibble: 10 × 21
##    detection_id date_time           tag_serial_number acoustic_tag_id
##           <int> <dttm>              <chr>             <chr>          
##  1     22402411 2014-05-26 21:49:00 1171775           A69-1601-26529 
##  2     22207337 2014-05-26 21:49:20 1171775           A69-1601-26529 
##  3     20620757 2014-05-26 22:00:00 1171775           A69-1601-26529 
##  4     21701322 2014-05-26 22:00:08 1171775           A69-1601-26529 
##  5     20604027 2014-05-26 22:08:00 1171775           A69-1601-26529 
##  6     21283233 2014-05-26 22:08:12 1171775           A69-1601-26529 
##  7     22131424 2014-05-26 22:14:00 1171775           A69-1601-26529 
##  8     22454253 2014-05-26 22:14:24 1171775           A69-1601-26529 
##  9     22402759 2014-05-26 22:20:00 1171775           A69-1601-26529 
## 10     21751235 2014-05-26 22:20:19 1171775           A69-1601-26529 
## # ℹ 17 more variables: animal_project_code <chr>, animal_id <int>,
## #   scientific_name <chr>, acoustic_project_code <chr>, receiver_id <chr>,
## #   station_name <chr>, deploy_latitude <dbl>, deploy_longitude <dbl>,
## #   depth_in_meters <dbl>, sensor_value <dbl>, sensor_unit <chr>,
## #   sensor2_value <dbl>, sensor2_unit <chr>, signal_to_noise_ratio <int>,
## #   source_file <chr>, qc_flag <lgl>, deployment_id <int>

Which individuals have been detected (animal_id) and in which period?

detections_silurus_period <-
  detections_silurus %>%
  mutate(date = date(date_time)) %>%
  group_by(animal_id) %>%
  summarize(
    start = min(date),
    end = max(date)
  )
detections_silurus_period
## # A tibble: 9 × 3
##   animal_id start      end       
##       <int> <date>     <date>    
## 1       365 2014-05-26 2014-11-16
## 2       366 2014-05-26 2014-09-22
## 3       367 2014-06-18 2014-06-19
## 4       368 2014-05-26 2014-09-01
## 5       369 2014-05-21 2014-07-01
## 6       370 2014-05-20 2014-11-16
## 7       384 2014-04-24 2014-04-26
## 8       385 2014-04-24 2014-12-19
## 9       386 2014-04-24 2014-12-28

Notice we group by animal_id, the unique identifier of the fish. However, if the fish has only been tagged once (as typically occurs), we could use acoustic_tag_id as well, i.e. the identifier picked up by acoustic receivers:

detections_silurus %>%
  mutate(date = date(date_time)) %>%
  group_by(acoustic_tag_id) %>%
  summarize(
    start = min(date),
    end = max(date)
  )
## # A tibble: 9 × 3
##   acoustic_tag_id start      end       
##   <chr>           <date>     <date>    
## 1 A69-1601-26529  2014-05-26 2014-11-16
## 2 A69-1601-26530  2014-05-26 2014-09-22
## 3 A69-1601-26531  2014-06-18 2014-06-19
## 4 A69-1601-26534  2014-05-26 2014-09-01
## 5 A69-1601-26535  2014-05-21 2014-07-01
## 6 A69-1601-26536  2014-05-20 2014-11-16
## 7 A69-1601-28296  2014-04-24 2014-04-26
## 8 A69-1601-28297  2014-04-24 2014-12-19
## 9 A69-1601-28298  2014-04-24 2014-12-28

We can also get the tracking duration of each fish:

detections_silurus_duration <-
  detections_silurus %>%
  group_by(animal_id) %>%
  summarize(duration = max(date_time) - min(date_time))
detections_silurus_duration
## # A tibble: 9 × 2
##   animal_id duration       
##       <int> <drtn>         
## 1       365 173.143345 days
## 2       366 118.459780 days
## 3       367   1.589421 days
## 4       368  98.322998 days
## 5       369  41.792720 days
## 6       370 179.210486 days
## 7       384   1.435150 days
## 8       385 238.517766 days
## 9       386 248.323808 days

How many times has an individual has been detected?

detections_silurus %>%
  group_by(animal_id) %>%
  count()
## # A tibble: 9 × 2
## # Groups:   animal_id [9]
##   animal_id     n
##       <int> <int>
## 1       365  4872
## 2       366  2778
## 3       367   497
## 4       368  7690
## 5       369  1183
## 6       370  4462
## 7       384  2563
## 8       385 29068
## 9       386 18478

Stations

At how many detection stations have the individuals been detected?

detections_silurus %>%
  group_by(animal_id) %>%
  distinct(station_name) %>%
  count()
## # A tibble: 9 × 2
## # Groups:   animal_id [9]
##   animal_id     n
##       <int> <int>
## 1       365    16
## 2       366     9
## 3       367     1
## 4       368    23
## 5       369     9
## 6       370    18
## 7       384     1
## 8       385    18
## 9       386    15

Which stations have been involved? You can retrieve them using list_values function applied to column station_name:

stations_silurus <-
  detections_silurus %>%
  list_values(station_name)
## 23 unique station_name values
stations_silurus
##  [1] "de-8"   "de-9"   "de-7"   "de-10"  "de-12"  "de-14"  "de-14a" "de-5"  
##  [9] "de-11"  "de-13"  "s-2a"   "de-18"  "de-19"  "de-20"  "de-3"   "de-2"  
## [17] "de-6"   "de-4"   "de-1"   "de-21"  "de-22"  "de-23"  "de-16"

Notice how a detection station can be linked to multiple deployments:

detections_silurus %>%
  distinct(station_name, deployment_id) %>%
  group_by(station_name) %>%
  add_tally() %>%
  arrange(desc(n))
## # A tibble: 33 × 3
## # Groups:   station_name [23]
##    station_name deployment_id     n
##    <chr>                <int> <int>
##  1 de-12                 2938     3
##  2 de-12                 1656     3
##  3 de-12                 1470     3
##  4 de-8                  1427     2
##  5 de-9                  1437     2
##  6 de-7                  1378     2
##  7 de-14                 1433     2
##  8 de-14a                1431     2
##  9 de-3                  1381     2
## 10 de-3                  2869     2
## # ℹ 23 more rows

Sometimes it’s interesting to know the number of detections per station:

n_detect_station <-
  detections_silurus %>%
  group_by(station_name) %>%
  count()
n_detect_station
## # A tibble: 23 × 2
## # Groups:   station_name [23]
##    station_name     n
##    <chr>        <int>
##  1 de-1           368
##  2 de-10         1681
##  3 de-11          163
##  4 de-12         4203
##  5 de-13          166
##  6 de-14        13353
##  7 de-14a        6604
##  8 de-16          591
##  9 de-18          148
## 10 de-19          650
## # ℹ 13 more rows

It’s also interesting to know the number of unique individuals per station:

n_silurus_station <-
  detections_silurus %>%
  distinct(station_name, animal_id) %>%
  group_by(station_name) %>%
  count()
n_silurus_station
## # A tibble: 23 × 2
## # Groups:   station_name [23]
##    station_name     n
##    <chr>        <int>
##  1 de-1             3
##  2 de-10            6
##  3 de-11            4
##  4 de-12            5
##  5 de-13            4
##  6 de-14            6
##  7 de-14a           6
##  8 de-16            4
##  9 de-18            3
## 10 de-19            5
## # ℹ 13 more rows

Acoustic tags

To get more information about the tags involved in detections_silurus, you can use the function get_tags, which returns tag related information such as serial number, manufacturer, model, and frequency:

tags_id <- list_values(detections_silurus, acoustic_tag_id)
## 9 unique acoustic_tag_id values
tags_silurus <- get_tags(acoustic_tag_id = tags_id)
tags_silurus
## # A tibble: 9 × 54
##   tag_serial_number tag_type tag_subtype sensor_type acoustic_tag_id
##   <chr>             <chr>    <chr>       <chr>       <chr>          
## 1 1157781           acoustic animal      NA          A69-1601-28296 
## 2 1157782           acoustic animal      NA          A69-1601-28297 
## 3 1157783           acoustic animal      NA          A69-1601-28298 
## 4 1171775           acoustic animal      NA          A69-1601-26529 
## 5 1171776           acoustic animal      NA          A69-1601-26530 
## 6 1171777           acoustic animal      NA          A69-1601-26531 
## 7 1171780           acoustic animal      NA          A69-1601-26534 
## 8 1171781           acoustic animal      NA          A69-1601-26535 
## 9 1171782           acoustic animal      NA          A69-1601-26536 
## # ℹ 49 more variables: acoustic_tag_id_alternative <chr>, manufacturer <chr>,
## #   model <chr>, frequency <chr>, status <chr>, activation_date <dttm>,
## #   battery_estimated_life <chr>, battery_estimated_end_date <dttm>,
## #   length <dbl>, diameter <dbl>, weight <dbl>, floating <lgl>,
## #   archive_memory <chr>, sensor_slope <dbl>, sensor_intercept <dbl>,
## #   sensor_range <chr>, sensor_range_min <dbl>, sensor_range_max <dbl>,
## #   sensor_resolution <dbl>, sensor_unit <chr>, sensor_accuracy <dbl>, …

You can also retrieve such information by tag_serial_number:

tags_serial <- unique(detections_silurus$tag_serial_number)
tags_silurus <- get_tags(tag_serial_number = tags_serial)
tags_silurus
## # A tibble: 9 × 54
##   tag_serial_number tag_type tag_subtype sensor_type acoustic_tag_id
##   <chr>             <chr>    <chr>       <chr>       <chr>          
## 1 1157781           acoustic animal      NA          A69-1601-28296 
## 2 1157782           acoustic animal      NA          A69-1601-28297 
## 3 1157783           acoustic animal      NA          A69-1601-28298 
## 4 1171775           acoustic animal      NA          A69-1601-26529 
## 5 1171776           acoustic animal      NA          A69-1601-26530 
## 6 1171777           acoustic animal      NA          A69-1601-26531 
## 7 1171780           acoustic animal      NA          A69-1601-26534 
## 8 1171781           acoustic animal      NA          A69-1601-26535 
## 9 1171782           acoustic animal      NA          A69-1601-26536 
## # ℹ 49 more variables: acoustic_tag_id_alternative <chr>, manufacturer <chr>,
## #   model <chr>, frequency <chr>, status <chr>, activation_date <dttm>,
## #   battery_estimated_life <chr>, battery_estimated_end_date <dttm>,
## #   length <dbl>, diameter <dbl>, weight <dbl>, floating <lgl>,
## #   archive_memory <chr>, sensor_slope <dbl>, sensor_intercept <dbl>,
## #   sensor_range <chr>, sensor_range_min <dbl>, sensor_range_max <dbl>,
## #   sensor_resolution <dbl>, sensor_unit <chr>, sensor_accuracy <dbl>, …

However, keep in mind that there is a fundamental difference between the arguments acoustic_tag_id and tag_serial_number: the tag_serial_number identifies the device, which could contain multiple tags or sensors and thus multiple acoustic_tag_id.

All possible acoustic_tag_id can be retrieved with the correspondent list_* function:

##  [1] "416kHz-485"  "416kHz-956"  "416kHz-1141" "416kHz-1164" "416kHz-1277"
##  [6] "416kHz-1935" "416kHz-2066" "416kHz-2219" "416kHz-2228" "416kHz-2248"

Acoustic network projects

The detection of Wels catfishes has been possible thanks to one or more acoustic network projects, mentioned in field acoustic_project_code. You can retrieve them via the list function list_values():

acoustic_project_codes <- detections_silurus %>%
  list_values(acoustic_project_code)
## 2 unique acoustic_project_code values
acoustic_project_codes
## [1] "demer"      "zeeschelde"

To get more information about these acoustic networks, you can use function get_acoustic_projects()

acoustic_projects_silurus <- get_acoustic_projects(
  acoustic_project_code = acoustic_project_codes
)
acoustic_projects_silurus
## # A tibble: 2 × 11
##   project_id project_code project_type telemetry_type project_name start_date
##        <int> <chr>        <chr>        <chr>          <chr>        <date>    
## 1          7 demer        acoustic     Acoustic       Demer        2014-04-10
## 2          5 zeeschelde   acoustic     Acoustic       Zeeschelde   2014-04-10
## # ℹ 5 more variables: end_date <date>, latitude <dbl>, longitude <dbl>,
## #   moratorium <lgl>, imis_dataset_id <int>

You can retrieve the full list of acoustic network projects with the correspondent list_* function:

##  [1] "2004_Gudena"              "2011_bovenschelde"       
##  [3] "2011_Loire"               "2011_Warnow"             
##  [5] "2013_Foyle"               "2013_Maas"               
##  [7] "2014_Frome"               "2014_Nene"               
##  [9] "2015_PhD_Gutmann_Roberts" "2016_Diaccia_Botrona"

Acoustic deployments

You can retrieve deployment information related to the acoustic networks in acoustic_project_codes by using get_acoustic_deployments() function:

deployments <- get_acoustic_deployments(
  acoustic_project_code = acoustic_project_codes
)
deployments
## # A tibble: 474 × 38
##    deployment_id receiver_id acoustic_project_code station_name
##            <int> <chr>       <chr>                 <chr>       
##  1          1424 VR2W-122350 demer                 de-1        
##  2          1658 VR2W-122345 demer                 de-2        
##  3          1478 VR2W-122325 demer                 de-2        
##  4          1661 VR2W-122344 demer                 de-3        
##  5          1381 VR2W-122339 demer                 de-3        
##  6          2869 VR2W-122339 demer                 de-3        
##  7          1662 VR2W-122323 demer                 de-4        
##  8          1425 VR2W-122337 demer                 de-5        
##  9          1663 VR2W-122341 demer                 de-6        
## 10          1378 VR2W-122320 demer                 de-7        
## # ℹ 464 more rows
## # ℹ 34 more variables: station_description <chr>, station_manager <chr>,
## #   deploy_date_time <dttm>, deploy_latitude <dbl>, deploy_longitude <dbl>,
## #   intended_latitude <dbl>, intended_longitude <dbl>, mooring_type <chr>,
## #   bottom_depth <chr>, riser_length <chr>, deploy_depth <chr>,
## #   battery_installation_date <dttm>, battery_estimated_end_date <dttm>,
## #   activation_date_time <dttm>, recover_date_time <dttm>, …

These are the deployments of the acoustic receivers involved in detections_silurus:

deploys_silurus <-
  detections_silurus %>%
  list_values(deployment_id)
## 33 unique deployment_id values
deploys_silurus
##  [1] 1427 1437 1378 1428 2938 1433 1431 1425 1429 1432 1379 1439 1436 1440 1381
## [16] 2869 1478 1663 1662 1424 1656 1659 1660 1441 2933 1434 1384 1506 1592 1470
## [31] 1588 1573 1593

More information about them can be retrieved via get_acoustic_deployments() function with argument deployment_id:

deployments_silurus <- get_acoustic_deployments(
  deployment_id = deploys_silurus
)
deployments_silurus
## # A tibble: 33 × 38
##    deployment_id receiver_id acoustic_project_code station_name
##            <int> <chr>       <chr>                 <chr>       
##  1          1424 VR2W-122350 demer                 de-1        
##  2          1478 VR2W-122325 demer                 de-2        
##  3          1381 VR2W-122339 demer                 de-3        
##  4          2869 VR2W-122339 demer                 de-3        
##  5          1662 VR2W-122323 demer                 de-4        
##  6          1425 VR2W-122337 demer                 de-5        
##  7          1663 VR2W-122341 demer                 de-6        
##  8          1378 VR2W-122320 demer                 de-7        
##  9          1593 VR2W-122320 demer                 de-7        
## 10          1427 VR2W-122330 demer                 de-8        
## # ℹ 23 more rows
## # ℹ 34 more variables: station_description <chr>, station_manager <chr>,
## #   deploy_date_time <dttm>, deploy_latitude <dbl>, deploy_longitude <dbl>,
## #   intended_latitude <dbl>, intended_longitude <dbl>, mooring_type <chr>,
## #   bottom_depth <chr>, riser_length <chr>, deploy_depth <chr>,
## #   battery_installation_date <dttm>, battery_estimated_end_date <dttm>,
## #   activation_date_time <dttm>, recover_date_time <dttm>, …

Deployment duration:

deployments_silurus_duration <-
  deployments_silurus %>%
  mutate(duration = as.duration(recover_date_time - deploy_date_time)) %>%
  select(deployment_id, station_name, duration) %>%
  arrange(deployment_id)
deployments_silurus_duration
## # A tibble: 33 × 3
##    deployment_id station_name duration                
##            <int> <chr>        <Duration>              
##  1          1378 de-7         19706400s (~32.58 weeks)
##  2          1379 s-2a         19440000s (~32.14 weeks)
##  3          1381 de-3         3888000s (~6.43 weeks)  
##  4          1384 de-21        5788800s (~9.57 weeks)  
##  5          1424 de-1         23760000s (~39.29 weeks)
##  6          1425 de-5         24451200s (~40.43 weeks)
##  7          1427 de-8         19706400s (~32.58 weeks)
##  8          1428 de-10        26611200s (~44 weeks)   
##  9          1429 de-11        26611200s (~44 weeks)   
## 10          1431 de-14a       16070400s (~26.57 weeks)
## # ℹ 23 more rows

Number of days a deployment detected the passage of one or more individuals:

n_active_days_deployments_silurus <-
  detections_silurus %>%
  mutate(date = date(date_time)) %>%
  distinct(deployment_id, station_name, date) %>%
  group_by(deployment_id, station_name) %>%
  summarize(n_days = n(), .groups = "drop") %>%
  ungroup()
n_active_days_deployments_silurus
## # A tibble: 33 × 3
##    deployment_id station_name n_days
##            <int> <chr>         <int>
##  1          1378 de-7            125
##  2          1379 s-2a              7
##  3          1381 de-3              5
##  4          1384 de-21            25
##  5          1424 de-1              7
##  6          1425 de-5             48
##  7          1427 de-8            142
##  8          1428 de-10            35
##  9          1429 de-11            15
## 10          1431 de-14a           59
## # ℹ 23 more rows

Relative detection duration, i.e. number of days with at least one detection divided by deployment duration:

rel_det_duration_silurus <-
  n_active_days_deployments_silurus %>%
  left_join(
    deployments_silurus_duration,
    by = c("deployment_id", "station_name")
  ) %>%
  mutate(
    relative_detection_duration = n_days * (24 * 60 * 60) / as.numeric(duration)
  ) %>%
  select(deployment_id, station_name, relative_detection_duration)
rel_det_duration_silurus
## # A tibble: 33 × 3
##    deployment_id station_name relative_detection_duration
##            <int> <chr>                              <dbl>
##  1          1378 de-7                              0.548 
##  2          1379 s-2a                              0.0311
##  3          1381 de-3                              0.111 
##  4          1384 de-21                             0.373 
##  5          1424 de-1                              0.0255
##  6          1425 de-5                              0.170 
##  7          1427 de-8                              0.623 
##  8          1428 de-10                             0.114 
##  9          1429 de-11                             0.0487
## 10          1431 de-14a                            0.317 
## # ℹ 23 more rows

Data visualization

Aside standard graphs, the geographical component of telemetry data makes interactive maps particularly useful. The package leaflet is quite popular to create such kind of visualizations.

We can for example create a map of the involved stations showing the station name and the acoustic project code it belongs to as pop-ups. First, we retrieve the coordinates of the stations:

geo_info_stations <-
  detections_silurus %>%
  distinct(
    station_name,
    deploy_latitude,
    deploy_longitude,
    acoustic_project_code
  ) %>%
  arrange(station_name)
geo_info_stations
## # A tibble: 23 × 4
##    station_name deploy_latitude deploy_longitude acoustic_project_code
##    <chr>                  <dbl>            <dbl> <chr>                
##  1 de-1                    51.0             4.84 demer                
##  2 de-10                   51.0             5.05 demer                
##  3 de-11                   51.0             5.05 demer                
##  4 de-12                   51.0             5.06 demer                
##  5 de-13                   51.0             5.06 demer                
##  6 de-14                   51.0             5.06 demer                
##  7 de-14a                  51.0             5.06 demer                
##  8 de-16                   51.0             5.06 demer                
##  9 de-18                   51.0             5.07 demer                
## 10 de-19                   51.0             5.08 demer                
## # ℹ 13 more rows

To be able to produce the desired map:

leaflet(geo_info_stations) %>%
  addTiles() %>%
  addMarkers(
    lng = ~deploy_longitude,
    lat = ~deploy_latitude,
    popup = ~paste0("Station: ", station_name, " (", acoustic_project_code, ")")
  )

We can visualize the number of detections per station, n_detect_station, by joining it with geo_info_stations:

# Create a continuous colour palette function
pal <- colorNumeric(
  palette = "viridis",
  domain = n_detect_station$n
)

n_detect_station %>%
  left_join(
    geo_info_stations,
    by = "station_name"
  ) %>%
  leaflet() %>%
  addTiles() %>%
  addCircleMarkers(
    lng = ~deploy_longitude,
    lat = ~deploy_latitude,
    radius = ~log(n),
    color = ~pal(n),
    fillOpacity = 0.8,
    stroke = FALSE,
    popup = ~paste(
      sep = "<br/>",
      paste0("Station: ", station_name, " (", acoustic_project_code, ")"),
      paste0("# detections: ", n)
    )
  ) %>%
  addLegend(
    title = "Detections",
    pal = pal,
    values = ~n
  )

In a similar way we can visualize the number of detected individuals per station, n_silurus_station:

# Create a continuous colour palette function
pal <- colorNumeric(
  palette = "viridis",
  domain = n_silurus_station$n
)

n_silurus_station %>%
  left_join(
    geo_info_stations,
    by = "station_name"
  ) %>%
  leaflet() %>%
  addTiles() %>%
  addCircleMarkers(
    lng = ~deploy_longitude,
    lat = ~deploy_latitude,
    radius = ~n,
    color = ~pal(n),
    fillOpacity = 0.8,
    stroke = FALSE,
    popup = ~paste(
      sep = "<br/>",
      paste0("Station: ", station_name, " (", acoustic_project_code, ")"),
      paste0("# detected individuals: ", n)
    )
  ) %>%
  addLegend(
    title = "Detected individuals",
    pal = pal,
    values = ~n
  )

We can also make a map of the relative detection duration of the deployments. First, we have to retrieve the deployment geographical coordinates:

geo_info_deploys <-
  detections_silurus %>%
  distinct(
    deployment_id,
    deploy_latitude,
    deploy_longitude,
    station_name,
    acoustic_project_code
  ) %>%
  arrange(station_name)
geo_info_deploys
## # A tibble: 33 × 5
##    deployment_id deploy_latitude deploy_longitude station_name
##            <int>           <dbl>            <dbl> <chr>       
##  1          1424            51.0             4.84 de-1        
##  2          1428            51.0             5.05 de-10       
##  3          1429            51.0             5.05 de-11       
##  4          2938            51.0             5.06 de-12       
##  5          1656            51.0             5.06 de-12       
##  6          1470            51.0             5.06 de-12       
##  7          1432            51.0             5.06 de-13       
##  8          1433            51.0             5.06 de-14       
##  9          1592            51.0             5.06 de-14       
## 10          1431            51.0             5.06 de-14a      
## # ℹ 23 more rows
## # ℹ 1 more variable: acoustic_project_code <chr>

We are ready to create the desired map, where we show the deployment ID, the station name and the network project as popups:

# Create a continuous colour palette function
pal <- colorNumeric(
  palette = "viridis",
  domain = rel_det_duration_silurus$relative_detection_duration
)

rel_det_duration_silurus %>%
  left_join(
    geo_info_deploys,
    by = c("deployment_id", "station_name")
  ) %>%
  leaflet() %>%
  addTiles() %>%
  addCircleMarkers(
    lng = ~deploy_longitude,
    lat = ~deploy_latitude,
    radius = ~100 * relative_detection_duration,
    color = ~pal(relative_detection_duration),
    fillOpacity = 0.8,
    stroke = FALSE,
    clusterOptions = markerClusterOptions(),
    popup = ~paste(
      sep = "<br/>",
      paste0("DeploymentID: ", deployment_id),
      paste0("Station: ", station_name, " (", acoustic_project_code, ")"),
      paste0("# relative detection duration: ", round(relative_detection_duration, 2))
    )
  ) %>%
  addLegend(
    title = "Relative detection duration",
    pal = pal,
    values = ~relative_detection_duration
  )

Do you want to add the temporal component to visualize the fish movement? Take a look at the moveVis package.