Explore acoustic telemetry data
Damiano Oldoni
2024-09-25
Source:vignettes/acoustic_telemetry.Rmd
acoustic_telemetry.Rmd
Introduction
In this vignette we show a typical workflow using the etn package to retrieve acoustic telemetry data from ETN. We will also use the packages dplyr for data exploration, lubridate to handle datetime data and leaflet for interactive visualizations.
To start, load the etn package:
And the other packages (with installation if necessary):
other_pkgs <- c("dplyr", "lubridate", "leaflet")
# install missing packages
pkgs_to_install <- other_pkgs[!other_pkgs %in% rownames(installed.packages())]
install.packages(pkgs_to_install)
# load packages
library(dplyr)
library(lubridate)
library(leaflet)
Connect with your user credentials (as received by VLIZ) to the database. To not expose such confidential information, you could opt to use environment variables:
con <- connect_to_etn(Sys.getenv("userid"), Sys.getenv("pwd"))
# This is the default, so you could also use connect_to_etn()
Using con
as variable to store the collection is not mandatory, but it makes your life much easier as con
is the default value of the argument connection
, present in every other function of this package.
Select project(s) of interest
A researcher typically works in the context of one or more animal projects. As the project codes are not always easy to remember, let’s start by getting an overview of all projects:
all_projects <- get_animal_projects()
Show a preview:
## # A tibble: 10 × 11
## project_id project_code project_type telemetry_type project_name start_date
## <int> <chr> <chr> <chr> <chr> <date>
## 1 793 2004_Gudena animal Acoustic 2004_Gudena 2004-01-01
## 2 16 2010_phd_reub… animal Acoustic 2010_phd_re… 2010-08-01
## 3 841 2010_phd_reub… animal Acoustic 2010_phd_re… 2010-08-01
## 4 760 2011_Loire animal Acoustic 2011_Loire 2011-11-11
## 5 754 2011_Warnow animal Acoustic 2011_Warnow 2011-06-01
## 6 20 2011_rivierpr… animal Acoustic 2011 Rivier… 2011-01-01
## 7 15 2012_leopoldk… animal Acoustic 2012 Leopol… 2012-01-01
## 8 757 2013_Foyle animal Acoustic 2013_Foyle 2013-07-01
## 9 18 2013_albertka… animal Acoustic 2013 Albert… 2013-10-10
## 10 801 2014_Frome animal Acoustic 2014_Frome 2014-10-01
## # ℹ 5 more variables: end_date <date>, latitude <dbl>, longitude <dbl>,
## # moratorium <lgl>, imis_dataset_id <int>
If you know the project code
already and you are just interested to get more information about it, you can specify it in the get_animal_projects()
function directly:
projects_code <- c("2014_demer", "2015_dijle")
projects_study <- get_animal_projects(animal_project_code = projects_code)
projects_study
## # A tibble: 2 × 11
## project_id project_code project_type telemetry_type project_name start_date
## <int> <chr> <chr> <chr> <chr> <date>
## 1 21 2014_demer animal Acoustic 2014 Demer 2014-04-10
## 2 22 2015_dijle animal Acoustic 2015 Dijle 2015-04-16
## # ℹ 5 more variables: end_date <date>, latitude <dbl>, longitude <dbl>,
## # moratorium <lgl>, imis_dataset_id <int>
This is exactly the same as retrieving all projects first and filtering them afterwards based on column project_code
:
## # A tibble: 2 × 11
## project_id project_code project_type telemetry_type project_name start_date
## <int> <chr> <chr> <chr> <chr> <date>
## 1 21 2014_demer animal Acoustic 2014 Demer 2014-04-10
## 2 22 2015_dijle animal Acoustic 2015 Dijle 2015-04-16
## # ℹ 5 more variables: end_date <date>, latitude <dbl>, longitude <dbl>,
## # moratorium <lgl>, imis_dataset_id <int>
To list all available animal project codes as a vector, you can use list_animal_project_codes()
, one of the etn functions in the list_*
family:
list_animal_project_codes() %>% head(10)
## [1] "2004_Gudena" "2010_phd_reubens" "2010_phd_reubens_sync"
## [4] "2011_Loire" "2011_rivierprik" "2011_Warnow"
## [7] "2012_leopoldkanaal" "2013_albertkanaal" "2013_Foyle"
## [10] "2014_demer"
Animals
By using get_animals()
you can retrieve information about each animal (animal_id
), such as scientific name, length, capture/release date and location, and the attached tag(s) (tag_serial_number
):
animals <- get_animals(animal_project_code = projects_code)
animals %>% head(10)
## # A tibble: 10 × 66
## animal_id animal_project_code tag_serial_number tag_type tag_subtype
## <int> <chr> <chr> <chr> <chr>
## 1 304 2014_demer 1187449 acoustic animal
## 2 384 2014_demer 1157781 acoustic animal
## 3 385 2014_demer 1157782 acoustic animal
## 4 386 2014_demer 1157783 acoustic animal
## 5 305 2014_demer 1187450 acoustic animal
## 6 383 2014_demer 1157780 acoustic animal
## 7 369 2014_demer 1171781 acoustic animal
## 8 370 2014_demer 1171782 acoustic animal
## 9 365 2014_demer 1171775 acoustic animal
## 10 366 2014_demer 1171776 acoustic animal
## # ℹ 61 more variables: acoustic_tag_id <chr>,
## # acoustic_tag_id_alternative <chr>, scientific_name <chr>,
## # common_name <chr>, aphia_id <int>, animal_label <chr>,
## # animal_nickname <chr>, tagger <chr>, capture_date_time <dttm>,
## # capture_location <chr>, capture_latitude <dbl>, capture_longitude <dbl>,
## # capture_method <chr>, capture_depth <chr>,
## # capture_temperature_change <chr>, release_date_time <dttm>, …
What species and how many individuals are tracked for the projects 2014_demer
and 2015_dijle
?
## # A tibble: 7 × 2
## scientific_name n
## <chr> <int>
## 1 Anguilla anguilla 1
## 2 Cyprinus carpio 2
## 3 Petromyzon marinus 2
## 4 Platichthys flesus 8
## 5 Rutilus rutilus 6
## 6 Silurus glanis 20
## 7 Squalius cephalus 3
Detections
Let’s say we are interested in the tracking data of Wels catfish (Silurus glanis) in 2014. You can retrieve the detection history using get_acoustic_detections()
:
detections_silurus <- get_acoustic_detections(
animal_project_code = projects_code,
start_date = "2014-01-01",
end_date = "2015-01-01", # The end date is exclusive
scientific_name = "Silurus glanis"
)
Preview:
## # A tibble: 10 × 21
## detection_id date_time tag_serial_number acoustic_tag_id
## <int> <dttm> <chr> <chr>
## 1 22402411 2014-05-26 21:49:00 1171775 A69-1601-26529
## 2 22207337 2014-05-26 21:49:20 1171775 A69-1601-26529
## 3 20620757 2014-05-26 22:00:00 1171775 A69-1601-26529
## 4 21701322 2014-05-26 22:00:08 1171775 A69-1601-26529
## 5 20604027 2014-05-26 22:08:00 1171775 A69-1601-26529
## 6 21283233 2014-05-26 22:08:12 1171775 A69-1601-26529
## 7 22131424 2014-05-26 22:14:00 1171775 A69-1601-26529
## 8 22454253 2014-05-26 22:14:24 1171775 A69-1601-26529
## 9 22402759 2014-05-26 22:20:00 1171775 A69-1601-26529
## 10 21751235 2014-05-26 22:20:19 1171775 A69-1601-26529
## # ℹ 17 more variables: animal_project_code <chr>, animal_id <int>,
## # scientific_name <chr>, acoustic_project_code <chr>, receiver_id <chr>,
## # station_name <chr>, deploy_latitude <dbl>, deploy_longitude <dbl>,
## # depth_in_meters <dbl>, sensor_value <dbl>, sensor_unit <chr>,
## # sensor2_value <dbl>, sensor2_unit <chr>, signal_to_noise_ratio <int>,
## # source_file <chr>, qc_flag <lgl>, deployment_id <int>
Which individuals have been detected (animal_id
) and in which period?
detections_silurus_period <-
detections_silurus %>%
mutate(date = date(date_time)) %>%
group_by(animal_id) %>%
summarize(
start = min(date),
end = max(date)
)
detections_silurus_period
## # A tibble: 9 × 3
## animal_id start end
## <int> <date> <date>
## 1 365 2014-05-26 2014-11-16
## 2 366 2014-05-26 2014-09-22
## 3 367 2014-06-18 2014-06-19
## 4 368 2014-05-26 2014-09-01
## 5 369 2014-05-21 2014-07-01
## 6 370 2014-05-20 2014-11-16
## 7 384 2014-04-24 2014-04-26
## 8 385 2014-04-24 2014-12-19
## 9 386 2014-04-24 2014-12-28
Notice we group by animal_id
, the unique identifier of the fish. However, if the fish has only been tagged once (as typically occurs), we could use acoustic_tag_id
as well, i.e. the identifier picked up by acoustic receivers:
detections_silurus %>%
mutate(date = date(date_time)) %>%
group_by(acoustic_tag_id) %>%
summarize(
start = min(date),
end = max(date)
)
## # A tibble: 9 × 3
## acoustic_tag_id start end
## <chr> <date> <date>
## 1 A69-1601-26529 2014-05-26 2014-11-16
## 2 A69-1601-26530 2014-05-26 2014-09-22
## 3 A69-1601-26531 2014-06-18 2014-06-19
## 4 A69-1601-26534 2014-05-26 2014-09-01
## 5 A69-1601-26535 2014-05-21 2014-07-01
## 6 A69-1601-26536 2014-05-20 2014-11-16
## 7 A69-1601-28296 2014-04-24 2014-04-26
## 8 A69-1601-28297 2014-04-24 2014-12-19
## 9 A69-1601-28298 2014-04-24 2014-12-28
We can also get the tracking duration of each fish:
detections_silurus_duration <-
detections_silurus %>%
group_by(animal_id) %>%
summarize(duration = max(date_time) - min(date_time))
detections_silurus_duration
## # A tibble: 9 × 2
## animal_id duration
## <int> <drtn>
## 1 365 173.143345 days
## 2 366 118.459780 days
## 3 367 1.589421 days
## 4 368 98.322998 days
## 5 369 41.792720 days
## 6 370 179.210486 days
## 7 384 1.435150 days
## 8 385 238.517766 days
## 9 386 248.323808 days
How many times has an individual has been detected?
## # A tibble: 9 × 2
## # Groups: animal_id [9]
## animal_id n
## <int> <int>
## 1 365 4872
## 2 366 2778
## 3 367 497
## 4 368 7690
## 5 369 1183
## 6 370 4462
## 7 384 2563
## 8 385 29068
## 9 386 18478
Stations
At how many detection stations have the individuals been detected?
## # A tibble: 9 × 2
## # Groups: animal_id [9]
## animal_id n
## <int> <int>
## 1 365 16
## 2 366 9
## 3 367 1
## 4 368 23
## 5 369 9
## 6 370 18
## 7 384 1
## 8 385 18
## 9 386 15
Which stations have been involved? You can retrieve them using list_values
function applied to column station_name
:
stations_silurus <-
detections_silurus %>%
list_values(station_name)
## 23 unique station_name values
stations_silurus
## [1] "de-8" "de-9" "de-7" "de-10" "de-12" "de-14" "de-14a" "de-5"
## [9] "de-11" "de-13" "s-2a" "de-18" "de-19" "de-20" "de-3" "de-2"
## [17] "de-6" "de-4" "de-1" "de-21" "de-22" "de-23" "de-16"
Notice how a detection station can be linked to multiple deployments:
detections_silurus %>%
distinct(station_name, deployment_id) %>%
group_by(station_name) %>%
add_tally() %>%
arrange(desc(n))
## # A tibble: 33 × 3
## # Groups: station_name [23]
## station_name deployment_id n
## <chr> <int> <int>
## 1 de-12 2938 3
## 2 de-12 1656 3
## 3 de-12 1470 3
## 4 de-8 1427 2
## 5 de-9 1437 2
## 6 de-7 1378 2
## 7 de-14 1433 2
## 8 de-14a 1431 2
## 9 de-3 1381 2
## 10 de-3 2869 2
## # ℹ 23 more rows
Sometimes it’s interesting to know the number of detections per station:
## # A tibble: 23 × 2
## # Groups: station_name [23]
## station_name n
## <chr> <int>
## 1 de-1 368
## 2 de-10 1681
## 3 de-11 163
## 4 de-12 4203
## 5 de-13 166
## 6 de-14 13353
## 7 de-14a 6604
## 8 de-16 591
## 9 de-18 148
## 10 de-19 650
## # ℹ 13 more rows
It’s also interesting to know the number of unique individuals per station:
n_silurus_station <-
detections_silurus %>%
distinct(station_name, animal_id) %>%
group_by(station_name) %>%
count()
n_silurus_station
## # A tibble: 23 × 2
## # Groups: station_name [23]
## station_name n
## <chr> <int>
## 1 de-1 3
## 2 de-10 6
## 3 de-11 4
## 4 de-12 5
## 5 de-13 4
## 6 de-14 6
## 7 de-14a 6
## 8 de-16 4
## 9 de-18 3
## 10 de-19 5
## # ℹ 13 more rows
Acoustic tags
To get more information about the tags involved in detections_silurus
, you can use the function get_tags
, which returns tag related information such as serial number, manufacturer, model, and frequency:
tags_id <- list_values(detections_silurus, acoustic_tag_id)
## 9 unique acoustic_tag_id values
tags_silurus <- get_tags(acoustic_tag_id = tags_id)
tags_silurus
## # A tibble: 9 × 54
## tag_serial_number tag_type tag_subtype sensor_type acoustic_tag_id
## <chr> <chr> <chr> <chr> <chr>
## 1 1157781 acoustic animal NA A69-1601-28296
## 2 1157782 acoustic animal NA A69-1601-28297
## 3 1157783 acoustic animal NA A69-1601-28298
## 4 1171775 acoustic animal NA A69-1601-26529
## 5 1171776 acoustic animal NA A69-1601-26530
## 6 1171777 acoustic animal NA A69-1601-26531
## 7 1171780 acoustic animal NA A69-1601-26534
## 8 1171781 acoustic animal NA A69-1601-26535
## 9 1171782 acoustic animal NA A69-1601-26536
## # ℹ 49 more variables: acoustic_tag_id_alternative <chr>, manufacturer <chr>,
## # model <chr>, frequency <chr>, status <chr>, activation_date <dttm>,
## # battery_estimated_life <chr>, battery_estimated_end_date <dttm>,
## # length <dbl>, diameter <dbl>, weight <dbl>, floating <lgl>,
## # archive_memory <chr>, sensor_slope <dbl>, sensor_intercept <dbl>,
## # sensor_range <chr>, sensor_range_min <dbl>, sensor_range_max <dbl>,
## # sensor_resolution <dbl>, sensor_unit <chr>, sensor_accuracy <dbl>, …
You can also retrieve such information by tag_serial_number
:
tags_serial <- unique(detections_silurus$tag_serial_number)
tags_silurus <- get_tags(tag_serial_number = tags_serial)
tags_silurus
## # A tibble: 9 × 54
## tag_serial_number tag_type tag_subtype sensor_type acoustic_tag_id
## <chr> <chr> <chr> <chr> <chr>
## 1 1157781 acoustic animal NA A69-1601-28296
## 2 1157782 acoustic animal NA A69-1601-28297
## 3 1157783 acoustic animal NA A69-1601-28298
## 4 1171775 acoustic animal NA A69-1601-26529
## 5 1171776 acoustic animal NA A69-1601-26530
## 6 1171777 acoustic animal NA A69-1601-26531
## 7 1171780 acoustic animal NA A69-1601-26534
## 8 1171781 acoustic animal NA A69-1601-26535
## 9 1171782 acoustic animal NA A69-1601-26536
## # ℹ 49 more variables: acoustic_tag_id_alternative <chr>, manufacturer <chr>,
## # model <chr>, frequency <chr>, status <chr>, activation_date <dttm>,
## # battery_estimated_life <chr>, battery_estimated_end_date <dttm>,
## # length <dbl>, diameter <dbl>, weight <dbl>, floating <lgl>,
## # archive_memory <chr>, sensor_slope <dbl>, sensor_intercept <dbl>,
## # sensor_range <chr>, sensor_range_min <dbl>, sensor_range_max <dbl>,
## # sensor_resolution <dbl>, sensor_unit <chr>, sensor_accuracy <dbl>, …
However, keep in mind that there is a fundamental difference between the arguments acoustic_tag_id
and tag_serial_number
: the tag_serial_number
identifies the device, which could contain multiple tags or sensors and thus multiple acoustic_tag_id
.
All possible acoustic_tag_id
can be retrieved with the correspondent list_*
function:
list_acoustic_tag_ids() %>% head(10)
## [1] "416kHz-485" "416kHz-956" "416kHz-1141" "416kHz-1164" "416kHz-1277"
## [6] "416kHz-1935" "416kHz-2066" "416kHz-2219" "416kHz-2228" "416kHz-2248"
Acoustic network projects
The detection of Wels catfishes has been possible thanks to one or more acoustic network projects, mentioned in field acoustic_project_code
. You can retrieve them via the list function list_values()
:
acoustic_project_codes <- detections_silurus %>%
list_values(acoustic_project_code)
## 2 unique acoustic_project_code values
acoustic_project_codes
## [1] "demer" "zeeschelde"
To get more information about these acoustic networks, you can use function get_acoustic_projects()
acoustic_projects_silurus <- get_acoustic_projects(
acoustic_project_code = acoustic_project_codes
)
acoustic_projects_silurus
## # A tibble: 2 × 11
## project_id project_code project_type telemetry_type project_name start_date
## <int> <chr> <chr> <chr> <chr> <date>
## 1 7 demer acoustic Acoustic Demer 2014-04-10
## 2 5 zeeschelde acoustic Acoustic Zeeschelde 2014-04-10
## # ℹ 5 more variables: end_date <date>, latitude <dbl>, longitude <dbl>,
## # moratorium <lgl>, imis_dataset_id <int>
You can retrieve the full list of acoustic network projects with the correspondent list_*
function:
## [1] "2004_Gudena" "2011_bovenschelde"
## [3] "2011_Loire" "2011_Warnow"
## [5] "2013_Foyle" "2013_Maas"
## [7] "2014_Frome" "2014_Nene"
## [9] "2015_PhD_Gutmann_Roberts" "2016_Diaccia_Botrona"
Acoustic deployments
You can retrieve deployment information related to the acoustic networks in acoustic_project_codes
by using get_acoustic_deployments()
function:
deployments <- get_acoustic_deployments(
acoustic_project_code = acoustic_project_codes
)
deployments
## # A tibble: 474 × 38
## deployment_id receiver_id acoustic_project_code station_name
## <int> <chr> <chr> <chr>
## 1 1424 VR2W-122350 demer de-1
## 2 1658 VR2W-122345 demer de-2
## 3 1478 VR2W-122325 demer de-2
## 4 1661 VR2W-122344 demer de-3
## 5 1381 VR2W-122339 demer de-3
## 6 2869 VR2W-122339 demer de-3
## 7 1662 VR2W-122323 demer de-4
## 8 1425 VR2W-122337 demer de-5
## 9 1663 VR2W-122341 demer de-6
## 10 1378 VR2W-122320 demer de-7
## # ℹ 464 more rows
## # ℹ 34 more variables: station_description <chr>, station_manager <chr>,
## # deploy_date_time <dttm>, deploy_latitude <dbl>, deploy_longitude <dbl>,
## # intended_latitude <dbl>, intended_longitude <dbl>, mooring_type <chr>,
## # bottom_depth <chr>, riser_length <chr>, deploy_depth <chr>,
## # battery_installation_date <dttm>, battery_estimated_end_date <dttm>,
## # activation_date_time <dttm>, recover_date_time <dttm>, …
These are the deployments of the acoustic receivers involved in detections_silurus
:
deploys_silurus <-
detections_silurus %>%
list_values(deployment_id)
## 33 unique deployment_id values
deploys_silurus
## [1] 1427 1437 1378 1428 2938 1433 1431 1425 1429 1432 1379 1439 1436 1440 1381
## [16] 2869 1478 1663 1662 1424 1656 1659 1660 1441 2933 1434 1384 1506 1592 1470
## [31] 1588 1573 1593
More information about them can be retrieved via get_acoustic_deployments()
function with argument deployment_id
:
deployments_silurus <- get_acoustic_deployments(
deployment_id = deploys_silurus
)
deployments_silurus
## # A tibble: 33 × 38
## deployment_id receiver_id acoustic_project_code station_name
## <int> <chr> <chr> <chr>
## 1 1424 VR2W-122350 demer de-1
## 2 1478 VR2W-122325 demer de-2
## 3 1381 VR2W-122339 demer de-3
## 4 2869 VR2W-122339 demer de-3
## 5 1662 VR2W-122323 demer de-4
## 6 1425 VR2W-122337 demer de-5
## 7 1663 VR2W-122341 demer de-6
## 8 1378 VR2W-122320 demer de-7
## 9 1593 VR2W-122320 demer de-7
## 10 1427 VR2W-122330 demer de-8
## # ℹ 23 more rows
## # ℹ 34 more variables: station_description <chr>, station_manager <chr>,
## # deploy_date_time <dttm>, deploy_latitude <dbl>, deploy_longitude <dbl>,
## # intended_latitude <dbl>, intended_longitude <dbl>, mooring_type <chr>,
## # bottom_depth <chr>, riser_length <chr>, deploy_depth <chr>,
## # battery_installation_date <dttm>, battery_estimated_end_date <dttm>,
## # activation_date_time <dttm>, recover_date_time <dttm>, …
Deployment duration:
deployments_silurus_duration <-
deployments_silurus %>%
mutate(duration = as.duration(recover_date_time - deploy_date_time)) %>%
select(deployment_id, station_name, duration) %>%
arrange(deployment_id)
deployments_silurus_duration
## # A tibble: 33 × 3
## deployment_id station_name duration
## <int> <chr> <Duration>
## 1 1378 de-7 19706400s (~32.58 weeks)
## 2 1379 s-2a 19440000s (~32.14 weeks)
## 3 1381 de-3 3888000s (~6.43 weeks)
## 4 1384 de-21 5788800s (~9.57 weeks)
## 5 1424 de-1 23760000s (~39.29 weeks)
## 6 1425 de-5 24451200s (~40.43 weeks)
## 7 1427 de-8 19706400s (~32.58 weeks)
## 8 1428 de-10 26611200s (~44 weeks)
## 9 1429 de-11 26611200s (~44 weeks)
## 10 1431 de-14a 16070400s (~26.57 weeks)
## # ℹ 23 more rows
Number of days a deployment detected the passage of one or more individuals:
n_active_days_deployments_silurus <-
detections_silurus %>%
mutate(date = date(date_time)) %>%
distinct(deployment_id, station_name, date) %>%
group_by(deployment_id, station_name) %>%
summarize(n_days = n(), .groups = "drop") %>%
ungroup()
n_active_days_deployments_silurus
## # A tibble: 33 × 3
## deployment_id station_name n_days
## <int> <chr> <int>
## 1 1378 de-7 125
## 2 1379 s-2a 7
## 3 1381 de-3 5
## 4 1384 de-21 25
## 5 1424 de-1 7
## 6 1425 de-5 48
## 7 1427 de-8 142
## 8 1428 de-10 35
## 9 1429 de-11 15
## 10 1431 de-14a 59
## # ℹ 23 more rows
Relative detection duration, i.e. number of days with at least one detection divided by deployment duration:
rel_det_duration_silurus <-
n_active_days_deployments_silurus %>%
left_join(
deployments_silurus_duration,
by = c("deployment_id", "station_name")
) %>%
mutate(
relative_detection_duration = n_days * (24 * 60 * 60) / as.numeric(duration)
) %>%
select(deployment_id, station_name, relative_detection_duration)
rel_det_duration_silurus
## # A tibble: 33 × 3
## deployment_id station_name relative_detection_duration
## <int> <chr> <dbl>
## 1 1378 de-7 0.548
## 2 1379 s-2a 0.0311
## 3 1381 de-3 0.111
## 4 1384 de-21 0.373
## 5 1424 de-1 0.0255
## 6 1425 de-5 0.170
## 7 1427 de-8 0.623
## 8 1428 de-10 0.114
## 9 1429 de-11 0.0487
## 10 1431 de-14a 0.317
## # ℹ 23 more rows
Data visualization
Aside standard graphs, the geographical component of telemetry data makes interactive maps particularly useful. The package leaflet
is quite popular to create such kind of visualizations.
We can for example create a map of the involved stations showing the station name and the acoustic project code it belongs to as pop-ups. First, we retrieve the coordinates of the stations:
geo_info_stations <-
detections_silurus %>%
distinct(
station_name,
deploy_latitude,
deploy_longitude,
acoustic_project_code
) %>%
arrange(station_name)
geo_info_stations
## # A tibble: 23 × 4
## station_name deploy_latitude deploy_longitude acoustic_project_code
## <chr> <dbl> <dbl> <chr>
## 1 de-1 51.0 4.84 demer
## 2 de-10 51.0 5.05 demer
## 3 de-11 51.0 5.05 demer
## 4 de-12 51.0 5.06 demer
## 5 de-13 51.0 5.06 demer
## 6 de-14 51.0 5.06 demer
## 7 de-14a 51.0 5.06 demer
## 8 de-16 51.0 5.06 demer
## 9 de-18 51.0 5.07 demer
## 10 de-19 51.0 5.08 demer
## # ℹ 13 more rows
To be able to produce the desired map:
leaflet(geo_info_stations) %>%
addTiles() %>%
addMarkers(
lng = ~deploy_longitude,
lat = ~deploy_latitude,
popup = ~paste0("Station: ", station_name, " (", acoustic_project_code, ")")
)
We can visualize the number of detections per station, n_detect_station
, by joining it with geo_info_stations
:
# Create a continuous colour palette function
pal <- colorNumeric(
palette = "viridis",
domain = n_detect_station$n
)
n_detect_station %>%
left_join(
geo_info_stations,
by = "station_name"
) %>%
leaflet() %>%
addTiles() %>%
addCircleMarkers(
lng = ~deploy_longitude,
lat = ~deploy_latitude,
radius = ~log(n),
color = ~pal(n),
fillOpacity = 0.8,
stroke = FALSE,
popup = ~paste(
sep = "<br/>",
paste0("Station: ", station_name, " (", acoustic_project_code, ")"),
paste0("# detections: ", n)
)
) %>%
addLegend(
title = "Detections",
pal = pal,
values = ~n
)
In a similar way we can visualize the number of detected individuals per station, n_silurus_station
:
# Create a continuous colour palette function
pal <- colorNumeric(
palette = "viridis",
domain = n_silurus_station$n
)
n_silurus_station %>%
left_join(
geo_info_stations,
by = "station_name"
) %>%
leaflet() %>%
addTiles() %>%
addCircleMarkers(
lng = ~deploy_longitude,
lat = ~deploy_latitude,
radius = ~n,
color = ~pal(n),
fillOpacity = 0.8,
stroke = FALSE,
popup = ~paste(
sep = "<br/>",
paste0("Station: ", station_name, " (", acoustic_project_code, ")"),
paste0("# detected individuals: ", n)
)
) %>%
addLegend(
title = "Detected individuals",
pal = pal,
values = ~n
)
We can also make a map of the relative detection duration of the deployments. First, we have to retrieve the deployment geographical coordinates:
geo_info_deploys <-
detections_silurus %>%
distinct(
deployment_id,
deploy_latitude,
deploy_longitude,
station_name,
acoustic_project_code
) %>%
arrange(station_name)
geo_info_deploys
## # A tibble: 33 × 5
## deployment_id deploy_latitude deploy_longitude station_name
## <int> <dbl> <dbl> <chr>
## 1 1424 51.0 4.84 de-1
## 2 1428 51.0 5.05 de-10
## 3 1429 51.0 5.05 de-11
## 4 2938 51.0 5.06 de-12
## 5 1656 51.0 5.06 de-12
## 6 1470 51.0 5.06 de-12
## 7 1432 51.0 5.06 de-13
## 8 1433 51.0 5.06 de-14
## 9 1592 51.0 5.06 de-14
## 10 1431 51.0 5.06 de-14a
## # ℹ 23 more rows
## # ℹ 1 more variable: acoustic_project_code <chr>
We are ready to create the desired map, where we show the deployment ID, the station name and the network project as popups:
# Create a continuous colour palette function
pal <- colorNumeric(
palette = "viridis",
domain = rel_det_duration_silurus$relative_detection_duration
)
rel_det_duration_silurus %>%
left_join(
geo_info_deploys,
by = c("deployment_id", "station_name")
) %>%
leaflet() %>%
addTiles() %>%
addCircleMarkers(
lng = ~deploy_longitude,
lat = ~deploy_latitude,
radius = ~100 * relative_detection_duration,
color = ~pal(relative_detection_duration),
fillOpacity = 0.8,
stroke = FALSE,
clusterOptions = markerClusterOptions(),
popup = ~paste(
sep = "<br/>",
paste0("DeploymentID: ", deployment_id),
paste0("Station: ", station_name, " (", acoustic_project_code, ")"),
paste0("# relative detection duration: ", round(relative_detection_duration, 2))
)
) %>%
addLegend(
title = "Relative detection duration",
pal = pal,
values = ~relative_detection_duration
)
Do you want to add the temporal component to visualize the fish movement? Take a look at the moveVis package.