Display points with classified effect
stat_effect(
mapping = NULL,
data = NULL,
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...,
threshold,
reference = 0,
detailed = TRUE,
signed = TRUE,
shape_colour = TRUE,
errorbar = TRUE,
error_colour = TRUE,
size = 6,
labels = class_labels(lang = "en", detailed = detailed, signed = signed),
ref_line = c("all", "ref", "none")
)
Set of aesthetic mappings created by aes()
. If specified and
inherit.aes = TRUE
(the default), it is combined with the default mapping
at the top level of the plot. You must supply mapping
if there is no plot
mapping.
The data to be displayed in this layer. There are three options:
If NULL
, the default, the data is inherited from the plot
data as specified in the call to ggplot()
.
A data.frame
, or other object, will override the plot
data. All objects will be fortified to produce a data frame. See
fortify()
for which variables will be created.
A function
will be called with a single argument,
the plot data. The return value must be a data.frame
, and
will be used as the layer data. A function
can be created
from a formula
(e.g. ~ head(.x, 10)
).
A position adjustment to use on the data for this layer. This
can be used in various ways, including to prevent overplotting and
improving the display. The position
argument accepts the following:
The result of calling a position function, such as position_jitter()
.
This method allows for passing extra arguments to the position.
A string naming the position adjustment. To give the position as a
string, strip the function name of the position_
prefix. For example,
to use position_jitter()
, give the position as "jitter"
.
For more information and other ways to specify the position, see the layer position documentation.
If FALSE
, the default, missing values are removed with
a warning. If TRUE
, missing values are silently removed.
logical. Should this layer be included in the legends?
NA
, the default, includes if any aesthetics are mapped.
FALSE
never includes, and TRUE
always includes.
It can also be a named logical vector to finely select the aesthetics to
display.
If FALSE
, overrides the default aesthetics,
rather than combining with them. This is most useful for helper functions
that define both data and aesthetics and shouldn't inherit behaviour from
the default plot specification, e.g. borders()
.
Other arguments passed on to layer()
's params
argument. These
arguments broadly fall into one of 4 categories below. Notably, further
arguments to the position
argument, or aesthetics that are required
can not be passed through ...
. Unknown arguments that are not part
of the 4 categories below are ignored.
Static aesthetics that are not mapped to a scale, but are at a fixed
value and apply to the layer as a whole. For example, colour = "red"
or linewidth = 3
. The geom's documentation has an Aesthetics
section that lists the available options. The 'required' aesthetics
cannot be passed on to the params
. Please note that while passing
unmapped aesthetics as vectors is technically possible, the order and
required length is not guaranteed to be parallel to the input data.
When constructing a layer using
a stat_*()
function, the ...
argument can be used to pass on
parameters to the geom
part of the layer. An example of this is
stat_density(geom = "area", outline.type = "both")
. The geom's
documentation lists which parameters it can accept.
Inversely, when constructing a layer using a
geom_*()
function, the ...
argument can be used to pass on parameters
to the stat
part of the layer. An example of this is
geom_area(stat = "density", adjust = 0.5)
. The stat's documentation
lists which parameters it can accept.
The key_glyph
argument of layer()
may also be passed on through
...
. This can be one of the functions described as
key glyphs, to change the display of the layer in the legend.
A vector of either 1 or 2 thresholds.
A single threshold will be transformed into
reference + c(-abs(threshold), abs(threshold))
.
The null hypothesis. Defaults to 0.
TRUE
indicates a detailed classification()
;
FALSE
a coarse_classification()
.
Defaults to TRUE
.
TRUE
indicates a signed classification;
FALSE
a classification with remove_sign()
.
Defaults to TRUE
.
Colour the background of the labels according to the
classification.
Defaults to TRUE
.
Display the uncertainty as error bars.
Defaults to TRUE
.
Colour the error bars according to the classification.
Defaults to TRUE
.
Size of the symbols.
the labels for the legend.
Which reference lines to display.
"all"
displays a dashed horizontal line at the reference
and a dotted
horizontal line at the threshold
.
"ref"
displays a dashed horizontal line at the reference
.
"none"
displays no horizontal lines.
Other ggplot2 add-ons:
scale_effect()
,
stat_fan()
# All possible classes
z <- data.frame(
estimate = c(-0.5, 0, 0.5, 1.5, 1, 0.5, 0, -0.5, -1, -1.5),
sd = c(rep(0.8, 3), rep(0.3, 7))
)
z$lcl <- qnorm(0.05, z$estimate, z$sd)
z$ucl <- qnorm(0.95, z$estimate, z$sd)
classification(z$lcl, z$ucl, threshold = 1) -> z$effect
c(
"?" = "unknown\neffect", "?+" = "potential\npositive\neffect",
"?-" = "potential\nnegative\neffect", "~" = "no effect",
"+" = "positive\neffect", "-" = "negative\neffect",
"+~" = "moderate\npositive\neffect", "-~" = "moderate\nnegative\neffect",
"++" = "strong\npositive\neffect", "--" = "strong\nnegative\neffect"
)[as.character(z$effect)] -> z$x
z$x <- factor(z$x, z$x)
z$display <- paste(
"estimate:", format_ci(z$estimate, lcl = z$lcl, ucl = z$ucl)
)
# Simulated trend
set.seed(20190521)
base_year <- 2000
n_year <- 20
trend <- data.frame(
dt = seq_len(n_year),
change = rnorm(n_year, sd = 0.2),
sd = rnorm(n_year, mean = 0.1, sd = 0.01)
)
trend$index <- cumsum(trend$change)
trend$lcl <- qnorm(0.025, trend$index, trend$sd)
trend$ucl <- qnorm(0.975, trend$index, trend$sd)
trend$year <- base_year + trend$dt
trend$display <- paste(
"index:", format_ci(trend$index, lcl = trend$lcl, ucl = trend$ucl)
)
th <- 0.25
ref <- 0
oldw <- getOption("warn")
options(warn = -1)
library(ggplot2)
theme_set(theme_grey(base_family = "Helvetica"))
update_geom_defaults("point", list(size = 5))
ggplot(z, aes(x = effect, y = estimate, ymin = lcl, ymax = ucl)) +
stat_effect(threshold = 1) +
coord_flip()
ggplot(z[3:5, ], aes(x = effect, y = estimate, ymin = lcl, ymax = ucl)) +
stat_effect(threshold = 1, ref_line = "none") +
coord_flip()
ggplot(z[3:5, ], aes(x = effect, y = estimate, ymin = lcl, ymax = ucl)) +
stat_effect(threshold = 1, errorbar = FALSE) +
coord_flip()
# plot indices
ggplot(trend, aes(x = year, y = index, ymin = lcl, ymax = ucl, sd = sd)) +
geom_line() +
stat_effect(threshold = th, reference = ref)
# plot pairwise differences
change_set <- function(z, base_year) {
n_year <- max(z$dt)
total_change <- lapply(
seq_len(n_year) - 1,
function(i) {
if (i > 0) {
y <- tail(z, -i)
} else {
y <- z
}
data.frame(
from = base_year + i, to = base_year + y$dt,
total = cumsum(y$change), sd = sqrt(cumsum(y$sd ^ 2))
)
}
)
total_change <- do.call(rbind, total_change)
total_change <- rbind(
total_change,
data.frame(
from = total_change$to, to = total_change$from,
total = -total_change$total, sd = total_change$sd
)
)
total_change$lcl <- qnorm(0.025, total_change$total, total_change$sd)
total_change$ucl <- qnorm(0.975, total_change$total, total_change$sd)
return(total_change)
}
head(trend, 10) |>
change_set(base_year) |>
ggplot(aes(x = from, y = to, ymin = lcl, ymax = ucl)) +
stat_effect(
threshold = th, reference = ref, aes(colour = total), ref_line = "none",
errorbar = FALSE, shape_colour = FALSE
) +
scale_colour_gradient2()
head(trend, 10) |>
change_set(base_year) |>
ggplot(aes(x = from, y = to, ymin = lcl, ymax = ucl)) +
stat_effect(
threshold = th, reference = ref, ref_line = "none", errorbar = FALSE
)
options(warn = oldw)