A fan plot consist of a set of transparent ribbons each representing a
different coverage of the uncertainty around an estimate.
The coverages are based on the assumption of a normal distribution with mean
link(y) and standard error sd.
add_fan(
p,
x = NULL,
y = NULL,
...,
sd,
link = c("identity", "log", "logit"),
max_prob = 0.9,
step = 0.05,
fillcolor = coarse_unsigned_palette[2],
data = NULL,
inherit = TRUE,
text = NULL,
hoverinfo = "text",
name
)a plotly object
the x variable.
the variable median on the natural scale.
Arguments (i.e., attributes) passed along to the trace type.
See schema() for a list of acceptable attributes for a given trace type
(by going to traces -> type -> attributes). Note that attributes
provided at this level may override other arguments
(e.g. plot_ly(x = 1:10, y = 1:10, color = I("red"), marker = list(color = "blue"))).
the variable of the standard error on the link scale.
the link between the natural scale and the link scale.
Defaults to "identity".
The coverage of the widest band.
Defaults to 0.9.
the step size between consecutive bands.
The function adds all bands with coverage max_prob - i * step for all
positive integer values i resulting in a positive coverage.
Defaults to 0.05.
The fill colour of the fan. Defaults to a greyish blue.
A data frame (optional) or crosstalk::SharedData object.
inherit attributes from plot_ly()?
textual labels.
Which hover information to display.
Defaults to "text".
When no "text" variable is specified, the function displays a formatted
confidence interval.
Optional name of the trace for the legend.
Other plotly add-ons:
add_classification(),
reference_shape(),
reference_text()
# All possible classes
z <- data.frame(
estimate = c(-0.5, 0, 0.5, 1.5, 1, 0.5, 0, -0.5, -1, -1.5),
sd = c(rep(0.8, 3), rep(0.3, 7))
)
z$lcl <- qnorm(0.05, z$estimate, z$sd)
z$ucl <- qnorm(0.95, z$estimate, z$sd)
classification(z$lcl, z$ucl, threshold = 1) -> z$effect
c(
"?" = "unknown\neffect", "?+" = "potential\npositive\neffect",
"?-" = "potential\nnegative\neffect", "~" = "no effect",
"+" = "positive\neffect", "-" = "negative\neffect",
"+~" = "moderate\npositive\neffect", "-~" = "moderate\nnegative\neffect",
"++" = "strong\npositive\neffect", "--" = "strong\nnegative\neffect"
)[as.character(z$effect)] -> z$x
z$x <- factor(z$x, z$x)
z$display <- paste(
"estimate:", format_ci(z$estimate, lcl = z$lcl, ucl = z$ucl)
)
# Simulated trend
set.seed(20190521)
base_year <- 2000
n_year <- 20
trend <- data.frame(
dt = seq_len(n_year),
change = rnorm(n_year, sd = 0.2),
sd = rnorm(n_year, mean = 0.1, sd = 0.01)
)
trend$index <- cumsum(trend$change)
trend$lcl <- qnorm(0.025, trend$index, trend$sd)
trend$ucl <- qnorm(0.975, trend$index, trend$sd)
trend$year <- base_year + trend$dt
trend$display <- paste(
"index:", format_ci(trend$index, lcl = trend$lcl, ucl = trend$ucl)
)
th <- 0.25
ref <- 0
library(plotly)
plot_ly(z, x = ~x, y = ~estimate) |>
add_fan(sd = ~sd, text = ~display) |>
add_classification(lcl = ~lcl, ucl = ~ucl, threshold = 1) |>
layout(
hovermode = "x unified",
shapes = reference_shape(threshold = 1),
annotations = reference_text(threshold = 1)
)
plot_ly(z, x = ~x, y = ~estimate) |>
add_fan(sd = ~sd, step = 0.1, text = ~display) |>
add_classification(
lcl = ~lcl, ucl = ~ucl, threshold = 1, detailed = FALSE
) |>
layout(
shapes = reference_shape(threshold = 1, line = TRUE),
annotations = reference_text(threshold = 1)
)
plot_ly(z, x = ~x, y = ~estimate) |>
add_fan(sd = ~sd, step = 0.2, hoverinfo = "none") |>
add_classification(
lcl = ~lcl, ucl = ~ucl, threshold = 1, signed = FALSE
) |>
layout(shapes = reference_shape(threshold = 1))
plot_ly(z, x = ~x, y = ~estimate) |>
add_fan(sd = ~sd, step = 0.3) |>
add_classification(
lcl = ~lcl, ucl = ~ucl, threshold = 1, detailed = FALSE, signed = FALSE,
text = ~display
) |>
layout(
shapes = reference_shape(threshold = 1, line = TRUE)
)
# trend
plot_ly(data = trend, x = ~year, y = ~index) |>
add_fan(sd = ~sd, text = ~display, hoverinfo = "text") |>
add_classification(sd = ~sd, threshold = th) |>
layout(
hovermode = "x unified", hoverdistance = 1,
shapes = reference_shape(threshold = th, reference = ref),
annotations = reference_text(threshold = th, reference = ref)
)