All distributions share the same latent variable \(\eta_{ij} = a + b_i\) with \(b_i = N(0, \sigma_r)\).
Usage
generate_data(
a = 0,
sigma_random = 0.5,
n_random = 20,
n_replicate = 10,
nb_size = 1,
b_size = 5,
zero_inflation = 0.5
)
Arguments
- a
the intercept of the latent variable
- sigma_random
The standard error for the random effect \(\sigma_r\).
- n_random
the number of random effect levels (groups).
- n_replicate
the number of observation per random effect level.
- nb_size
the size parameter of the negative binomial distribution. Passed to the
size
parameter ofstats::rnbinom()
.- b_size
the size parameter of the binomial distribution. Passed to the
size
parameter ofstats::rbinom()
.- zero_inflation
the probability the the observed value stems for the a point mass in zero.
Value
A data.frame
ìd
the id of the random effect.eta
the latent variable.zero_inflation
use the point mass in zero.poisson
the Poisson distributed variable.zipoisson
the zero-inflated Poisson distributed variable.negbin
the negative binomial distributed variable.zinegbin
the zero-inflated negative binomial distributed variable.binom
the binomial distributed variable.
Details
The Poisson distribution uses \(\lambda = e^{\eta_{ij}}\).
The negation binomial distribution uses \(\mu = e^{\eta_{ij}}\).
The binomial distribution uses \(\pi_{ij} = e^{\eta_{ij}}/(e^{\eta_{ij}}+ 1)\).
See also
Other utils:
plot.dispersion_check()
,
plot.distribution_check()
Examples
set.seed(20181202)
head(generate_data())
#> group_id observation_id eta zero_inflation poisson zipoisson negbin
#> 1 1 1 0.5510209 FALSE 2 2 4
#> 2 2 2 1.0340814 FALSE 3 3 2
#> 3 3 3 -0.4308339 TRUE 0 0 3
#> 4 4 4 0.4349636 TRUE 1 0 3
#> 5 5 5 -0.2710201 FALSE 0 0 1
#> 6 6 6 -1.2489241 TRUE 0 0 0
#> zinegbin binom
#> 1 4 5
#> 2 2 4
#> 3 0 0
#> 4 0 2
#> 5 1 1
#> 6 0 2