
GitHub

Peter Desmet, Stijn Van Hoey

Twitter

Who are we?

Peter DesmetStijn Van Hoey

GitHub

Twitter

GitHub

https://twitter.com/peterdesmet
https://github.com/peterdesmet
https://twitter.com/svanhoey
https://github.com/stijnvanhoey

What code* could
be beneficial for
others in the team?

* could be… plot function, bash-trick, tex template .sty, guideline, model, statistical analysis, data cleaning, time series filtering,...

Version control...
1. Tell the story of your project
2. Travel back in time
3. Experiment with changes
4. Backup your work
5. Collaborate on projects

Version control...
1. Tell the story of your project
2. Travel back in time
3. Experiment with changes
4. Backup your work
5. Collaborate on projects

The principles explained in the Git
part can be further extended
towards collaboration

Remotes mean other people can
access your project and commits
tell other people the story of your
project

GitHub provides much more
functionality than just being a
remote repository

Not only for coders!

Anatomy of a
repository

Online editing*

* commit, pull request,... on the background (GitHub as online webapp)

You are owner or

collaborator of

this repo

You Propose an

adaptation to a

‘foreign’ repo

Issues

MARKDOWN

MARKDOWN?!?

To learn the syntax, check mastering-markdown...

https://guides.github.com/features/mastering-markdown/

GitHub - remote with benefits
issues - report todos to yourself/team

Working together on code*

* code in a broad: also guidelines, latex documents, markdown...

Working at the same time with
multiple people on the same code
requires workflows to avoid conflicts

Many workflows are possible, we
will focus on two of them, based on
the so-called GitHub workflow

https://guides.github.com/introduction/flow/

1. You, within your team
2. You, contributing to open source

1. Small team collaboration

Consider the
personal workflow
with a cluster

We can
interchange the
cluster with a
second team
member

Both members are
working on the
(same) code

risk for

FILE

conflicts!

We want to minimize the risk of
conflicts

Always work on a
branch, based on
the latest version
of the master

Push the branch to
the remote

Peter wants to
suggest his code for
remote master

This is a pull
request

GitHub asks you automatically...

Handling pull requests

When collaborating on a project, you
ALWAYS merge local additions
online*, this is done with a pull
request

* remember, we keep the master clean !

A pull request is the moment to
revise and discuss the code with
your colleagues

Stijn is now behind
with his branch

He wants to
integrate these
changes

This is done by
a merge* of the
remote work to
the local branch

* rebase would be a valid option as well,
but INBO policy is to merge

Stijn can push,
and pull request
without conflicts

Still, during a merge* of the remote
changes into a local branch,
conflicts can appear

*with rebase the same conflicts would appear

COMMANDMENTS

● Keep master in sync with the remote master
● Never commit to master, always on a branch
● Only branch off master
● Branch often, branch for each feature, each bug-fix*
● Never merge into master locally

* branches are cheap

pull request - tell others about changes you've pushed
merge* (remote commits into local branch) - update your
local branch from online merges

*rebase is doing exactly the same, but the git
history will have other esthetics...

Inviting collaborators

2. Open-source contribution

The main difference is you can not
directly push to the repo, since you
do not have these rights*

* raising issues won’t be a problem

You have to make your own copy.
This is called a fork

So, now you have a personal remote
and an external remote , typically
called origin and upstream

You have all the rights towards your
origin and pull request rights
towards upstream

Based on the most
recent upstream
remote master,
commits are
added to a new
branch

Pushing this
branch to the
origin remote...

...triggers the
option for a pull
request towards
the upstream
remote

All (other) users can now update the
local master from the upstream
master. This is by fetching the
upstream and merge the upstream
master to the local master

fetch upstream,
merge upstream
master

fork - a copy of an existing repository
origin - the default name for the self-owned remote
upstream - the default name for an external remote
fetch - download the latest updates from a remote

So far...

remote with benefits
report todos to yourself/team
tell others about changes you've pushed
update your local branch from online merges
a copy of an existing repository
the default name for the self-owned remote
the default name for an external remote
download the latest updates from a remote

GitHub
issues

pull request
merge*

fork
origin

upstream
fetch

* similar to rebase

Version control...
1. Tell the story of your project
2. Travel back in time
3. Experiment with changes
4. Backup your work
5. Collaborate on projects

@mentions

Releases

Markdown

DOIs
Issue referencing

Close via commit

Website hostingWiki

Projects
CI integration

What code could
be beneficial for
others in the team?

Try to define a few topics/projects to work
together on the code (start small)

Acknowledgements:
- Andy Hayden
- Joris Vandenbossche
- GitHub guides

http://slides.com/hayd/mj-git#/16/1
https://jorisvandenbossche.github.io/collaborative-development-workflow/collaborative-development-workflow.slides.html?theme=sky#/24
https://guides.github.com/

