This function retrieves the important fields of table Trees (of all periods) from the given database and checks for anomalies between periods, such as zombies, shifters, outlier_height, outlier_diameter or walkers.

check_trees_evolution(database, forest_reserve = "all")

Arguments

database

name of Fieldmap/Access database (with specific Fieldmap structure) including path

forest_reserve

name of forest reserve for which the records in the database should be checked (defaults to "all")

Value

Dataframe with inconsistent data with ID's and additional columns aberrant_field (which column is wrong) and anomaly (what is wrong with the input)

Examples

library(forrescalc)
# (add path to your own fieldmap database here)
path_to_fieldmapdb <-
  system.file("example/database/mdb_bosres.sqlite", package = "forrescalc")
check_trees_evolution(path_to_fieldmapdb)
#> # A tibble: 4 × 7
#>   plot_id period tree_measure_id aberrant_field anomaly   aberrant_value tree_id
#>     <int> <chr>  <chr>           <chr>          <chr>     <chr>          <chr>  
#> 1    1005 1_2    2217_17         dbh_mm         outlier_… 325_425        1_1005…
#> 2   11000 1_2    1762_2158       dbh_mm         outlier_… 300_370        1_1100…
#> 3   21000 1_2    20_18           height_m       outlier_… 29.01_36.511   1_2100…
#> 4   11000 0_1    182_182         dbh_mm         outlier_… 750_870        0_1100…
check_trees_evolution(path_to_fieldmapdb, forest_reserve = "Everzwijnbad")
#> Warning: There was 1 warning in `mutate()`.
#>  In argument: `min_period = min(.data$period)`.
#> Caused by warning in `min()`:
#> ! no non-missing arguments to min; returning Inf
#> # A tibble: 0 × 6
#> # ℹ 6 variables: plot_id <int>, period <chr>, tree_measure_id <chr>,
#> #   old_id <chr>, aberrant_field <chr>, anomaly <chr>