This function makes aggregations of vegetation data on the levels of

  • plot and year

  • subplot and year (only for plot type 'core area')

  • plot, species and year (only for plot type 'core area')

calculate_vegetation(data_vegetation, data_herblayer)

Arguments

data_vegetation

dataframe on vegetation with variables ...

data_herblayer

dataframe on vegetation in the species level ('herb layer') with variables ...

Value

List of dataframes that are mentioned in the above description

Examples

library(forrescalc)
# (add path to your own fieldmap database here)
path_to_fieldmapdb <-
  system.file("example/database/mdb_bosres.sqlite", package = "forrescalc")
data_vegetation <- load_data_vegetation(path_to_fieldmapdb)
data_herblayer <- load_data_herblayer(path_to_fieldmapdb)
calculate_vegetation(data_vegetation, data_herblayer)
#> $veg_by_plot
#> # A tibble: 43 × 29
#>    plottype plot_id subplot_id period year_main_survey date_vegetation    
#>    <chr>      <int>      <int>  <int>            <int> <dttm>             
#>  1 CA         11000     155511      1             2000 2000-08-01 00:00:00
#>  2 CA         11000     155511      2             2011 2011-06-24 00:00:00
#>  3 CA         11000     155511      3             2021 2021-07-20 00:00:00
#>  4 CA         11000     155512      1             2000 2000-08-01 00:00:00
#>  5 CA         11000     155513      1             2000 2000-08-01 00:00:00
#>  6 CA         11000     155521      2             2011 2011-06-24 00:00:00
#>  7 CA         11000     155521      3             2021 2021-07-20 00:00:00
#>  8 CA         11000     155531      2             2011 2011-06-24 00:00:00
#>  9 CA         11000     155531      3             2021 2021-07-20 00:00:00
#> 10 CA         21000         17      1             2009 2009-06-17 00:00:00
#> # ℹ 33 more rows
#> # ℹ 23 more variables: number_of_species <int>,
#> #   cumm_herb_coverage_class_average_perc <dbl>, moss_cover_min <dbl>,
#> #   moss_cover_max <dbl>, moss_cover_mid <dbl>, herb_cover_min <dbl>,
#> #   herb_cover_max <dbl>, herb_cover_mid <dbl>, shrub_cover_min <dbl>,
#> #   shrub_cover_max <dbl>, shrub_cover_mid <dbl>, tree_cover_min <dbl>,
#> #   tree_cover_max <dbl>, tree_cover_mid <dbl>, waterlayer_cover_min <dbl>, …
#> 
#> $veg_by_core_area_species
#> # A tibble: 11 × 12
#>    plottype plot_id period  year species number_of_subplots_w…¹ perc_of_subplots
#>    <chr>      <int>  <int> <int>   <int>                  <int>            <dbl>
#>  1 CA         11000      1  2000      NA                      3            100  
#>  2 CA         11000      2  2011     131                      2             66.7
#>  3 CA         11000      2  2011      NA                      1             33.3
#>  4 CA         11000      3  2021     131                      2             66.7
#>  5 CA         11000      3  2021     161                      1             33.3
#>  6 CA         11000      3  2021      NA                      1             33.3
#>  7 CA         21000      1  2009     131                     10            100  
#>  8 CA         21000      1  2009     161                      1             10  
#>  9 CA         21000      2  2019     131                     10            100  
#> 10 CA        141100      1  2007     161                      3            100  
#> 11 CA        141100      2  2017     161                      3            100  
#> # ℹ abbreviated name: ¹​number_of_subplots_with_vegetation
#> # ℹ 5 more variables: number_of_subplots_browsed <int>,
#> #   number_of_subplots_seriously_browsed <int>, perc_of_subplots_browsed <dbl>,
#> #   perc_of_subplots_seriously_browsed <dbl>,
#> #   mean_coverage_class_average_perc <dbl>
#>